Vapor-Phase Passivation of Chlorine-Terminated Ge(100) Using Self-Assembled Monolayers of Hexanethiol.

ACS Appl Mater Interfaces

School of Chemistry & AMBER Centre, University College Cork, Cork T12 YN60, Ireland.

Published: July 2020

Continued scaling of electronic devices shows the need to incorporate high mobility alternatives to silicon, the cornerstone of the semiconductor industry, into modern field effect transistor (FET) devices. Germanium is well-poised to serve as the channel material in FET devices as it boasts an electron and hole mobility more than twice and four times that of Si, respectively. However, its unstable native oxide makes its passivation a crucial step toward its potential integration into future FETs. The International Roadmap for Devices and Systems (IRDS) predicts continued aggressive scaling not only of the device size but also of the pitch in nanowire arrays. The development of a vapor-phase chemical passivation technique will be required to prevent the collapse of these structures that can occur because of the surface tension and capillary forces that are experienced when tight-pitched nanowire arrays are processed via liquid-phase chemistry. Reported here is a vapor-phase process using hexanethiol for the passivation of planar Ge(100) substrates. Results benchmarking it against its well-established liquid-phase equivalent are also presented. X-ray photoelectron spectroscopy was used to monitor the effectiveness of the developed vapor-phase protocol, where the presence of oxide was monitored at 0, 24, and 168 h. Water contact angle measurements compliment these results by demonstrating an increase in hydrophobicity of the passivated substrates. Atomic force microscopy monitored the surface topology before and after processing to ensure the process does not cause roughening of the surface, which is critical to demonstrate suitability for nanostructures. It is shown that the 200 min vapor-phase passivation procedure generates stable, passivated surfaces with less roughness than the liquid-phase counterpart.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c02548DOI Listing

Publication Analysis

Top Keywords

vapor-phase passivation
8
fet devices
8
nanowire arrays
8
vapor-phase
5
passivation chlorine-terminated
4
chlorine-terminated ge100
4
ge100 self-assembled
4
self-assembled monolayers
4
monolayers hexanethiol
4
hexanethiol continued
4

Similar Publications

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.

View Article and Find Full Text PDF

Preparation Techniques for Perovskite Single Crystal Films: From Nucleation to Growth.

Chem Asian J

December 2024

East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China.

Thickness-controllable perovskite single crystal films exhibit tremendous potential for various optoelectronic applications due to their capacity to leverage the relationship between diffusion length and absorption depth. However, the fabrication processes have suffered from difficulties in large-area production and poor quality with abundant surface defects. While post-treatments, such as passivation and polishing, can provide partial improvement in surface quality, the fundamental solution lies in the direct growth of high-quality single crystal films.

View Article and Find Full Text PDF

Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment.

Science

July 2024

Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control for Aerospace Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

The ever-increasing power conversion efficiency of perovskite solar cells has illuminated the future of the photovoltaic industry, but the development of commercial devices is hampered by their poor stability. In this study, we report a scalable stabilization method using vapor-phase fluoride treatment, which achieves 18.1%-efficient solar modules (228 square centimeters) with accelerated aging-projected lifetimes (time to 80% of efficiency remaining) of 43,000 ± 9000 hours under 1-sun illumination at 30°C.

View Article and Find Full Text PDF

Topotactic, Vapor-Phase, Monitored Formation of Ultrathin, Phase-Pure 2D-on-3D Halide Perovskite Surfaces.

ACS Appl Mater Interfaces

May 2023

Dept. of Mol. Chem. & Mater. Science, Weizmann Inst. of Science, Rehovot 7610001, Israel.

Two-dimensional (2D) halide perovskites, HaPs, can provide chemical stability to three-dimensional (3D) HaP surfaces, protecting them from exposure to ambient species and from reacting with contacting layers. Both actions occur with 2D HaPs, with the general stoichiometry RPbI (R: long or bulky organic amine) covering the 3D ones. Adding such covering films can also boost power conversion efficiencies of photovoltaic cells by passivating surface/interface trap states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!