A Six-Armed Phenhomazine Ligand with a Potential "Turn-Off" Copper(II) Sensing Capability through Terbium(III) Luminescence Quenching.

Chemistry

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de, Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Buenos Aires, 1428, Argentina.

Published: October 2020

Herein, the design, synthesis, and characterization of a phenhomazine ligand are described. The ligand has six pendant acetate arms designed for the combined coordination of copper(II) and lanthanide(III) ions, with the perspective of developing a "turn-off" copper sensor. The key step for the ligand preparation was the one-step endomethylene bridge fission of a diamino Tröger's base with a concomitant alkylation. Fluorescence and absorption spectroscopies as well as nuclear magnetic resonance (NMR) experiments were performed to analyze and understand the coordination properties of the ligand. Transition metal coordination was driven by the synergistic effect of the free nitrogen atoms of the diazocinic core and the two central acetate arms attached to those nitrogen atoms, whereas lanthanide coordination is performed by the external acetate arms, presumably forming a self-assembled 2:2 metallosupramolecular structure. The terbium complex shows the typical green emission with narrow bands and long luminescence lifetimes. The luminescence quenching produced by the presence of copper(II) ions was analyzed. This work sets, therefore, a starting point for the development of a phenhomazine-based "turn-off" copper(II) sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202002282DOI Listing

Publication Analysis

Top Keywords

acetate arms
12
phenhomazine ligand
8
"turn-off" copperii
8
luminescence quenching
8
nitrogen atoms
8
ligand
5
six-armed phenhomazine
4
ligand potential
4
potential "turn-off"
4
copperii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!