The hierarchical architecture of the collagen fibril is well understood, involving non-integer staggering of collagen molecules which results in a 67 nm periodic molecular density variation termed D-banding. Other than this variation, collagen fibrils are considered to be homogeneous at the micro-scale and beyond. Interestingly, serial kink structures have been shown to form at discrete locations along the length of collagen fibrils from some mechanically overloaded tendons. The formation of these kinks at discrete locations along the length of fibrils (discrete plasticity) may indicate pre-existing structural variations at a length scale greater than that of the D-banding. Using a high velocity nanomechanical mapping technique, 25 tendon collagen fibrils, were mechanically and structurally mapped along 10 μm of their length in dehydrated and hydrated states with resolutions of 20 nm and 8 nm respectively. Analysis of the variation in hydrated indentation modulus along individual collagen fibrils revealed a micro-scale structural variation not observed in the hydrated or dehydrated structural maps. The spacing distribution of this variation was similar to that observed for inter-kink distances seen in SEM images of discrete plasticity type damage. We propose that longitudinal variation in collagen fibril structure leads to localized mechanical susceptibility to damage under overload. Furthermore, we suggest that this variation has its origins in heterogeneous crosslink density along the length of collagen fibrils. The presence of pre-existing sites of mechanical vulnerability along the length of collagen fibrils may be important to biological remodeling of tendon, with mechanically-activated sites having distinct protein binding capabilities and enzyme susceptibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2020.103849 | DOI Listing |
iScience
January 2025
Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.
Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.
View Article and Find Full Text PDFElife
January 2025
Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFPeerJ
January 2025
University of Amsterdam, Amsterdam, Netherlands.
Background: Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity.
View Article and Find Full Text PDFMatrix Biol
February 2025
Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:
Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!