The mechanism of early blood-brain barrier (BBB) disruption after stroke has been intensively studied but still not fully understood. Here, we report that microRNA-30a (miR-30a) could mediate BBB damage using both cellular and animal models of ischemic stroke. In the experiments in vitro, inhibition of miR-30a decreased BBB permeability, prevented the degradation of tight junction proteins, and reduced intracellular free zinc in endothelial cells. We found that the zinc transporter ZnT4 was a direct target of negative regulation by miR-30a, and ZnT4/zinc signaling pathway contributed significantly to miR-30a-mediated BBB damage. Consistent with these in vitro findings, treatment with miR-30a inhibitor reduced zinc accumulation, increased the expression of ZnT4, and prevented the loss of tight junction proteins in microvessels of ischemic animals. Furthermore, inhibition of miR-30a, even at 90 min post onset of middle cerebral artery occlusion, prevented BBB damage, reduced infarct volume, and ameliorated neurological deficits. Together, our findings provide novel insights into the mechanisms of cerebral ischemia-induced BBB disruption and indicate miR-30a as a regulator of BBB function that can be an effective therapeutic target for ischemic stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922758PMC
http://dx.doi.org/10.1177/0271678X20926787DOI Listing

Publication Analysis

Top Keywords

bbb damage
12
cerebral ischemia-induced
8
blood-brain barrier
8
bbb disruption
8
ischemic stroke
8
inhibition mir-30a
8
tight junction
8
junction proteins
8
bbb
7
mir-30a
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!