The discovery of charge-density-wave-related effects in the resonant inelastic x-ray scattering spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive resonant inelastic x-ray scattering study of La_{2-x}Sr_{x}CuO_{4} finding that charge-density wave effects persist up to a remarkably high doping level of x=0.21 before disappearing at x=0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross section for phonons and charge-density-wave-induced phonon softening. We interpret our results in terms of a charge-density wave that is generated by strong correlations and a phonon response that is driven by the charge-density-wave-induced modification of the lattice.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.207005DOI Listing

Publication Analysis

Top Keywords

resonant inelastic
8
inelastic x-ray
8
x-ray scattering
8
charge-density wave
8
fermi surface
8
correlated charge
4
charge density
4
density wave
4
wave la_{2-x}sr_{x}cuo_{4}
4
la_{2-x}sr_{x}cuo_{4} evidenced
4

Similar Publications

Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).

View Article and Find Full Text PDF

Electronic quenching of sulfur induced by argon collisions.

Phys Chem Chem Phys

January 2025

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.

An accurate potential energy model, explicitly designed for studying scattering and treating the spin-orbit and nonadiabatic couplings on an equal footing, is proposed for the S + Ar system. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach, building the geometry dependence of the spin-orbit interaction a diabatisation scheme. The resulting full diabatic model is used in close-coupling calculations to compute inelastic scattering cross sections for de-excitation from the S(D) fine structure level into the P multiplet.

View Article and Find Full Text PDF

In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!