A charge transfer model is developed within the framework of the grand canonical ensemble through the analysis of the behavior of the fractional charge as a function of the chemical potential of the bath when the temperature and the external chemical potential are kept fixed. Departing from the fact that, before the interaction between two species, each one has a zero fractional charge, one can identify two situations after the interaction occurs where the fractional charge of at least one of the species is different from zero, indicating that there has been charge transference. One of them corresponds to the case when one of the species is immersed in a bath conformed by the other one, while the other is related to the case in which both species are present in equal amounts (stoichiometric proportion). Correlations between the fractional charges and average energies, thus obtained with experimental equilibrium constants, kinetic rate constants, hydration constants, and bond enthalpies, indicate that, although at the experimental temperatures, they are very small quantities, they have chemically meaningful information. Additionally, in the stoichiometric case, one also finds a rather good correlation between the equalized chemical potential and the one obtained from experimental information for a test set of diatomic and triatomic molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.0c02496 | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
A fundamental manifestation of the nontrivial correlations of an incompressible fractional quantum Hall (FQH) state is that an electron added to it disintegrates into more elementary particles, namely fractionally-charged composite fermions (CFs). We show here that the Girvin-MacDonald-Platzman (GMP) density-wave excitation of the ν=n/(2pn±1) FQH states also splits into more elementary single CF excitons. In particular, the GMP graviton, which refers to the recently observed spin-2 neutral excitation in the vanishing wave vector limit [Liang et al.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.
View Article and Find Full Text PDFSci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, College of Engineering, Taif University, Taif, 21944, Saudi Arabia.
This article proposes a novel dual-loop control (DLC) method with a Tilt Integral Derivative (TID) Controller for output voltage regulation and inductor current regulation in a boost converter. The TID controller is designed with the aid of swarm inspired algorithms, particularly Artificial Bee Colony (ABC) and Salp Swarm Optimization (SSO). The TID Controller is a robust, and feedback type of controller and belongs to the family of fractional order controllers.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand.
Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .
Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!