The ubiquitin-proteasome system degrades ubiquitin-modified proteins to maintain protein homeostasis and to control signalling. Whole-genome sequencing of patients with severe deafness and early-onset cataracts as part of a neurological, sensorial and cutaneous novel syndrome identified a unique deep intronic homozygous variant in the PSMC3 gene, encoding the proteasome ATPase subunit Rpt5, which lead to the transcription of a cryptic exon. The proteasome content and activity in patient's fibroblasts was however unaffected. Nevertheless, patient's cells exhibited impaired protein homeostasis characterized by accumulation of ubiquitinated proteins suggesting severe proteotoxic stress. Indeed, the TCF11/Nrf1 transcriptional pathway allowing proteasome recovery after proteasome inhibition is permanently activated in the patient's fibroblasts. Upon chemical proteasome inhibition, this pathway was however impaired in patient's cells, which were unable to compensate for proteotoxic stress although a higher proteasome content and activity. Zebrafish modelling for knockout in PSMC3 remarkably reproduced the human phenotype with inner ear development anomalies as well as cataracts, suggesting that Rpt5 plays a major role in inner ear, lens and central nervous system development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338805 | PMC |
http://dx.doi.org/10.15252/emmm.201911861 | DOI Listing |
Toxicol Appl Pharmacol
December 2024
Yu-Yue Pathology Scientific Research Center, Chongqing 400039, PR China; Jinfeng Laboratory, Chongqing 400039, PR China. Electronic address:
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Due to the poor therapeutic efficacy of CRC treatments and poor prognosis of the disease, effective treatment strategies are urgently needed. As long-term proteotoxic stress is a major cause of cell death, agents that induce proteotoxic stress offer a promising strategy for cancer intervention.
View Article and Find Full Text PDFPhysiol Genomics
December 2024
Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia.
This study investigates the molecular responses to heat stroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 years) and old (mean age = 66.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China. Electronic address:
Osteosarcoma tissues demonstrated elevated expression of proteins (FDX1 and DLAT) integral to cuproptosis in our preliminary study, indicating the potential effectiveness of anti-tumor strategies predicated on this process. Nevertheless, the overexpression of copper export proteins and the challenge of copper ion penetration may contribute to insufficient local copper ion concentration for inducing cuproptosis. Herein, we engineered a biomimetic copper-elesclomol-polyphenol network for the efficient delivery of copper ions and the copper ionophore elesclomol.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Institute of Bioelementology, Orenburg State University, Orenburg, Russia.
Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable.
View Article and Find Full Text PDFEMBO J
December 2024
CRBM, Univ. Montpellier, CNRS, Montpellier, France.
The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!