Bath Electrospinning of Continuous and Scalable Multifunctional MXene-Infiltrated Nanoyarns.

Small

A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA.

Published: July 2020

AI Article Synopsis

  • Electroactive yarns made from stretchable materials like nylon and polyurethane are crucial for applications in energy storage, soft robotics, and sensing.
  • A new one-step electrospinning method achieves high loading of Ti C T MXene flakes in these nanoyarns, resulting in impressive electrical conductivity and significant stretchability.
  • The MXene/nylon and MXene/PU yarns show promising capabilities as electrodes and strain sensors, indicating their potential for use in flexible electronics and monitoring body movements.

Article Abstract

Electroactive yarns that are stretchable are desired for many electronic textile applications, including energy storage, soft robotics, and sensing. However, using current methods to produce these yarns, achieving high loadings of electroactive materials and simultaneously demonstrating stretchability is a critical challenge. Here, a one-step bath electrospinning technique is developed to effectively capture Ti C T MXene flakes throughout continuous nylon and polyurethane (PU) nanofiber yarns (nanoyarns). With up to ≈90 wt% MXene loading, the resulting MXene/nylon nanoyarns demonstrate high electrical conductivity (up to 1195 S cm ). By varying the flake size and MXene concentration, nanoyarns achieve stretchability of up to 43% (MXene/nylon) and 263% (MXene/PU). MXene/nylon nanoyarn electrodes offer high specific capacitance in saturated LiClO electrolyte (440 F cm at 5 mV s ), with a wide voltage window of 1.25 V and high rate capability (72% between 5 and 500 mV s ). As strain sensors, MXene/PU yarns demonstrate a wide sensing range (60% under cyclic stretching), high sensitivity (gauge factor of ≈17 in the range of 20-50% strain), and low drift. Utilizing the stretchability of polymer nanofibers and the electrical and electrochemical properties of MXene, MXene-based nanoyarns demonstrate potential in a wide range of applications, including stretchable electronics and body movement monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202002158DOI Listing

Publication Analysis

Top Keywords

bath electrospinning
8
applications including
8
nanoyarns demonstrate
8
nanoyarns
5
high
5
electrospinning continuous
4
continuous scalable
4
scalable multifunctional
4
multifunctional mxene-infiltrated
4
mxene-infiltrated nanoyarns
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!