While physiological responses to low-light environments have been studied among corals on mesophotic coral ecosystems worldwide (MCEs; 30-150 m), the mechanisms behind acclimatization and adaptation to depth are not well understood for most coral species. Transcriptomic approaches based on RNA sequencing are useful tools for quantifying gene expression plasticity, particularly in slow-growing species such as scleractinian corals, and for identifying potential functional differences among conspecifics. A tag-based RNA-Seq (Tag-Seq) pipeline was applied to quantify transcriptional variation in natural populations of the scleractinian coral Montastraea cavernosa from mesophotic and shallower environments across five sites in Belize and the Gulf of Mexico: Carrie Bow Cay, West and East Flower Garden Banks, Pulley Ridge, and Dry Tortugas. Regional site location was a stronger driver of gene expression patterns than depth. However, mesophotic corals among all sites shared similar regulation of metabolic and cell growth functional pathways that may represent common physiological responses to environmental conditions at depth. Additionally, in a transplant experiment at West and East Flower Garden Banks, colonies transplanted from mesophotic to shallower habitats diverged from the control mesophotic group over time, indicating depth-regulated plasticity of gene expression. When the shallower depth zone experienced a bleaching event, bleaching severity did not differ significantly between transplants and shallow controls, but gene expression patterns indicated variable regulation of stress responses among depth treatments. Coupled observational and experimental studies of gene expression among mesophotic and shallower M. cavernosa provide insights into the ability of this depth-generalist coral species to persist under varying environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.15495 | DOI Listing |
Planta
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China.
A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.
View Article and Find Full Text PDFMol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, 313200, China.
Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!