Identification of Schistosoma japonicum GSK3β interacting partners by yeast two-hybrid screening and its role in parasite survival.

Parasitol Res

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China.

Published: July 2020

Schistosoma is the causative agent of schistosomiasis, a common infectious disease distributed worldwide. Our previous phosphoproteomic analysis suggested that glycogen synthase kinase 3 (GSK3), a conserved protein kinase in eukaryotes, is likely involved in protein phosphorylation of Schistosoma japonicum. Here, we aimed to identify the interacting partners of S. japonicum GSK3β (SjGSK3β) and to evaluate its role in parasite survival. Toward these ends, we determined the transcription levels of SjGSK3β at different developmental stages and identified its interacting partners of SjGSK3β by screening a yeast two-hybrid S. japonicum cDNA library. We further used RNA interference (RNAi) to inhibit the expression of SjGSK3β in adult worms in vitro and examined the resultant changes in transcription of its putative interacting proteins and in worm viability compared with those of control worms. Reverse transcription-quantitative polymerase chain analysis indicated that SjGSK3β is expressed throughout the life cycle of S. japonicum, with higher expression levels detected in the eggs and relatively higher expression level found in male worms than in female worms. By screening the yeast two-hybrid library, eight proteins were identified as potentially interacting with SjGSK3β including cell division cycle 37 homolog (Cdc37), 14-3-3 protein, tegument antigen (I(H)A), V-ATPase proteolipid subunit, myosin alkali light chain 1, and three proteins without recognized functional domains. In addition, SjGSK3β RNAi reduced the SjGSK3β gene transcript level, leading to a significant decrease in kinase activity, cell viability, and worm survival. Collectively, these findings suggested that SjGSK3β may interact with its partner proteins to influence worm survival by regulating kinase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-020-06731-2DOI Listing

Publication Analysis

Top Keywords

interacting partners
12
yeast two-hybrid
12
sjgsk3β
9
schistosoma japonicum
8
japonicum gsk3β
8
role parasite
8
parasite survival
8
identified interacting
8
screening yeast
8
higher expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!