Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Targeted vector control strategies aiming to prevent mosquito borne disease are severely limited by the logistical burden of vector surveillance, the monitoring of an area to understand mosquito species composition, abundance and spatial distribution. We describe development of an imaging system within a mosquito trap to remotely identify caught mosquitoes, including selection of the image resolution requirement, a design to meet that specification, and evaluation of the system. The necessary trap image resolution was determined to be 16 lp/mm, or 31.25um. An optics system meeting these specifications was implemented in a BG-GAT mosquito trap. Its ability to provide images suitable for accurate specimen identification was evaluated by providing entomologists with images of individual specimens, taken either with a microscope or within the trap and asking them to provide a species identification, then comparing these results. No difference in identification accuracy between the microscope and the trap images was found; however, due to limitations of human species classification from a single image, the system is only able to provide accurate genus-level mosquito classification. Further integration of this system with machine learning computer vision algorithms has the potential to provide near-real time mosquito surveillance data at the species level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249828 | PMC |
http://dx.doi.org/10.1364/BOE.382391 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!