Holographic microscopes are emerging as suitable tools for diagnostics and environmental monitoring, providing high-throughput, label-free, quantitative imaging capabilities through small and compact devices. In-line holographic microscopes can be realized at contained costs, trading off complexity in the phase retrieval process and being limited to sparse samples. Here we present a 3D printed, cost effective and field portable off-axis holographic microscope based on the concept of holographic microfluidic slide. Our scheme removes complexity from the reconstruction process, as phase retrieval is non iterative and obtainable by hologram demodulation. The configuration we introduce ensures flexibility in the definition of the optical scheme, exploitable to realize modular devices with different features. We discuss trade-offs and design rules of thumb to follow for developing DH microscopes based on the proposed solution. Using our prototype, we image flowing marine microalgae, polystyrene beads, bacteria and microplastics. We detail the effect on the performance and costs of each parameter, design, and hardware choice, guiding readers toward the realization of optimized devices that can be employed out of the lab by non-expert users for point of care testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249844PMC
http://dx.doi.org/10.1364/BOE.11.002511DOI Listing

Publication Analysis

Top Keywords

off-axis holographic
8
holographic microscopes
8
phase retrieval
8
holographic
5
compact off-axis
4
holographic slide
4
slide microscope
4
microscope design
4
design guidelines
4
guidelines holographic
4

Similar Publications

Optical diffraction tomography using a self-reference module.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.

Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.

View Article and Find Full Text PDF

Lens-Free On-Chip Quantitative Phase Microscopy for Large Phase Objects Based on a Biplane Phase Retrieval Method.

Sensors (Basel)

December 2024

Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Lens-free on-chip microscopy (LFOCM) is a powerful computational imaging technology that combines high-throughput capabilities with cost efficiency. However, in LFOCM, the phase recovered by iterative phase retrieval techniques is generally wrapped into the range of -π to π, necessitating phase unwrapping to recover absolute phase distributions. Moreover, this unwrapping process is prone to errors, particularly in areas with large phase gradients or low spatial sampling, due to the absence of reliable initial guesses.

View Article and Find Full Text PDF

In order to address the issue of low effective bandwidth ratio in off-axis digital holography, which is caused by the impact of zeroth- and first-order terms on the first-order term, an improved digital holographic reconstruction algorithm by zeroth-order term elimination based on the Riesz transform is proposed in this paper. First, an off-axis hologram is convolved with the Riesz kernels. Then, in the spectrum, the zeroth-order term is effectively eliminated by a singularity at the origin of the Riesz kernels, which can improve the effective bandwidth ratio and make the best use of the bandwidth.

View Article and Find Full Text PDF

A compact common-path off-axis digital holographic imaging method is proposed utilizing polarization-angular-multiplexing for Jones matrix measurement. Our method employs a common-path off-axis configuration to capture multiplexed off-axis interferograms generated by orthogonally polarized object beams and a reference beam on a monochrome CCD camera. The modulation of the fringe direction is achieved by two homemade retro-reflector mirrors, allowing for the retrieval of the Jones matrix distribution of transparent specimens through a matrix-division algorithm.

View Article and Find Full Text PDF

The perturbation of the reference wave due to electric stray fields represents a major challenge in quantitative electron holographic investigations. By introducing a focused-ion-beam-milled rectangular hole, the reference window, in an area of nearly constant electrostatic potential of the sample, this perturbation can be significantly reduced. The edge of the window forms a closed conducting loop, acting similarly to a Faraday cage, shielding the influence of the stray field on the reference wave to some extent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!