The striatum, the main input structure of the basal ganglia, is critical for action selection and adaptive motor control. To understand the neuronal mechanisms underlying these functions, an analysis of microcircuits that compose the striatum is necessary. Among these, cholinergic interneurons (ChIs) provide intrinsic striatal innervation whose dysfunction is implicated in neuropsychiatric diseases, such as Parkinson's disease and Tourette syndrome. The ability to experimentally manipulate the activity of ChIs is critical to gain insights into their contribution to the normal function of the striatum and the emergence of behavioral abnormalities in pathological states. In this study, we generated and tested CAV-pChAT-GFP, a replication-defective canine adenovirus type 2 (CAV-2) vector carrying the green fluorescent protein (GFP) sequence under the control of the human choline acetyltransferase (ChAT) promoter. We first tested the potential specificity of CAV-pChAT-GFP to label striatal ChIs in a rat before performing experiments on two macaque monkeys. In the vector-injected rat and monkey striatum, we found that GFP expression preferentially colocalized with ChAT-immunoreactivity throughout the striatum, including those from local circuit interneurons. CAV-2 vectors containing transgene driven by the ChAT promoter provide a powerful tool for investigating ChI contributions to circuit function and behavior in nonhuman primates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242643 | PMC |
http://dx.doi.org/10.3389/fnmol.2020.00076 | DOI Listing |
Brain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFGlia
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown.
View Article and Find Full Text PDFJ Neurochem
January 2025
Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, 1083 Hungary. Electronic address:
We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
Striatum, the input stage of the basal ganglia, is important for sensory-motor integration, initiation and selection of behavior, as well as reward learning. Striatum receives glutamatergic inputs from mainly cortex and thalamus. In rodents, the striatal projection neurons (SPNs), giving rise to the direct and the indirect pathway (dSPNs and iSPNs, respectively), account for 95% of the neurons, and the remaining 5% are GABAergic and cholinergic interneurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!