Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5 contains a distal enhancer that is functional in CD4 regulatory T (T) cells and required for T-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3 T cells, which are unable to control colitis in a cell-transfer model of the disease. In human T cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116706 | PMC |
http://dx.doi.org/10.1038/s41586-020-2296-7 | DOI Listing |
Mil Med
January 2025
Division of Endocrinology, Diabetes and Metabolism, University of California Davis Health, Sacramento, CA 95817, USA.
We report the case of a 29-year-old male soldier with a time in service above 10 years, found to have asymptomatic long QT syndrome (LQTS), a condition associated with increased risk of potentially fatal ventricular arrhythmias, during a flight physical. A review of his past medical history revealed a transient QT prolongation during an episode of hypoglycemia due to endogenous hyperinsulinism caused by an insulinoma, as an infantryman 7 years earlier; the resolution of the QT prolongation was spontaneous. He was evaluated and considered fit for duty by cardiology.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
The 3p21.31 locus is the most robust genomic region associated with COVID-19 severity. This locus contains a main chemokine receptor (CKR) cluster.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Drug Safety Research & Development, Pfizer, Inc., Groton, CT 06340, USA.
One of the potential risk factors of recombinant adeno-associated virus (rAAV)-based gene therapy is insertional mutagenesis, which has been associated with the development of hepatocellular carcinoma (HCC) in rAAV-treated neonatal mice. The objective of this study was to investigate if well-established in vitro cell transformation assays (CTA) in mouse cell lines can detect AAV2 or AAVdj-mediated cell transformation. Since AAV integration at the Rian locus in neonatal mice has been implicated in AAV-mediated HCC, an rAAV vector specifically targeting the mouse Rian locus and an additional rAAV vector previously shown to cause HCC in neonatal mice were both tested for the induction of cell transformation in NIH3T3 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!