Long-term memory can improve when incoming information is congruent with known semantic information. This so-called congruence effect has widely been shown in younger adults, but age-related changes and neural mechanisms remain unclear. Here, congruence improved recognition memory in younger and older adults (i.e. congruence effect), with only weak evidence for age-related decline in one behavioral study. In an EEG study, however, no significant behavioral differences in the congruence effect could be observed between age-groups. In line with this observation, electroencephalography data show that, in both groups, congruence led to widespread differences in Event-Related Potentials (ERPs), starting at around 400 ms after stimulus onset, and theta, alpha and beta oscillations (4-20 Hz). Importantly, these congruence-related ERPs were associated to increases in memory performance for congruent items, in both age groups. Finally, the described ERPs and neural oscillations in the theta-alpha range (5-13 Hz) were less pronounced in the elderly despite a preserved congruence effect. Together, semantic congruence increases long-term memory across the lifespan, and, at the neural level, this could be linked to neural oscillations in the theta, alpha and beta range, as well as ERPs that were previously associated with semantic processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272459 | PMC |
http://dx.doi.org/10.1038/s41598-020-65872-7 | DOI Listing |
Chaos
January 2025
Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil.
The presence of chaos is ubiquitous in mathematical models of neuroscience. In experimental neural systems, chaos was convincingly demonstrated in membranes, neurons, and small networks. However, its effects on the brain have long been debated.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFUnlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Royal Rainmaking and Agricultural Aviation, Bangkok 10900, Thailand.
Rainfall prediction is a crucial aspect of climate science, particularly in monsoon-influenced regions where accurate forecasts are essential. This study evaluates rainfall prediction models in the Eastern Thailand by examining an optimal lag time associated with the Oceanic Niño Index (ONI). Five deep learning models-RNN with ReLU, LSTM, GRU (single-layer), LSTM+LSTM, and LSTM+GRU (multi-layer)-were compared using mean absolute error (MAE) and root mean square error (RMSE).
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Autonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!