The solar photocatalysis of water splitting represents a significant branch of enzymatic simulation by efficient chemical conversion and the generation of hydrogen as green energy provides a feasible way for the replacement of fossil fuels to solve energy and environmental issues. We report herein the self-assembly of a Co-based metal-organic framework (MOF) constructed from 4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetrabenzoic acid [or tetrakis(4-carboxyphenyl)ethylene, HTCPE] and 4,4'-bipyridyl (bpy) as four-point- and two-point-connected nodes, respectively. This material, namely, poly[(μ-4,4'-bipyridyl)[μ-4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetrabenzoato]cobalt(II)], [Co(CHO)(CHN)], crystallized as dark-red block-shaped crystals with high crystallinity and was fully characterized by single-crystal X-ray diffraction, PXRD, IR, solid-state UV-Vis and cyclic voltammetry (CV) measurements. The redox-active Co atoms in the structure could be used as the catalytic sites for hydrogen production via water splitting. The application of this new MOF as a heterogeneous catalyst for light-driven H production has been explored in a three-component system with fluorescein as photosensitizer and trimethylamine as the sacrificial electron donor, and the initial volume of H production is about 360 µmol after 12 h irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2053229620007044 | DOI Listing |
JACS Au
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .
View Article and Find Full Text PDFFront Chem
December 2024
Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland.
2,3-Dihydrobenzofurans are noteworthy scaffolds in organic and medicinal chemistry, constituting the structural framework of many of the varied medicinally active organic compounds. Moreover, a diverse variety of biologically potent natural products also contain this heterocyclic nucleus. Reflecting on the wide biological substantiality of dihydrobenzofurans, several innovative and facile synthetic developments are evolving to achieve these heterocycles.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Guangxi Colleges and Universities Key Laboratory of surface and interface electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guilin University of Technology, Guilin 541004, China. Electronic address:
With increasing awareness of environmental protection, additional attention has been given to environmentally friendly metal anticorrosion research. In this paper, the green organic corrosion inhibitor sodium lignosulfonate (SLS) was extracted from bagasse waste, and a Ce-MOF@SLS smart anticorrosive film containing the inhibitor was prepared on the surface of an aluminum alloy by in situ electrodeposition. The material was characterized by SEM, EDS, FT-IR, XRD and XPS, and its corrosion resistance was tested with EIS and neutral salt spray tests.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400 PR China. Electronic address:
The formation and growth of lithium dendrites is an ever-present and urgent problem in lithium-ion batteries (LIBs). At the same time, the low melting point of commercial polyolefin separators may lead to safety issues during application. On this basis, in this work, poly (m-phenylene isophthalamide) (PMIA)/Zr-based metal-organic framework (NH-UiO-66) composite separator was prepared by non-solvent induced phase separation (NIPS).
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China. Electronic address:
Iron and zinc are two metal ions with important roles in biology, industry and the environment, however, the excess or deficiency of both Fe and Zn can have negative effects on organisms and environment. Therefore, the development of efficient method for simultaneous detection of Fe and Zn provides timely information on metal content, simplifies operations and improves efficiency. In this work, a small molecule (COOH-BPEA) of recognizing Zn modified the four metal-organic-framework (MOF) (UiO-66-X(66, OH, NH and OH/NH)) was developed for the simultaneous detection of Fe and Zn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!