Syntheses and structures of two novel fluorescent metal-organic frameworks generated from a tridentate donor-acceptor motif ligand.

Acta Crystallogr C Struct Chem

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.

Published: June 2020

The tridentate organic ligand 4,4',4''-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoic acid (HL) has been synthesized (as the methanol 1.25-solvate, CHNO·1.25CHOH). As a donor-acceptor motif molecule, HL possess strong intramolecular charge transfer (ICT) fluorescence. Through hydrogen bonds, HL molecules construct a two-dimensional (2D) network, which pack together into three-dimensional (3D) networks with an ABC stacking pattern in the crystalline state. Based on HL and M(NO) salts (M = Cd and Zn) under solvothermal conditions, two metal-organic frameworks (MOFs), namely, catena-poly[[triaquacadmium(II)]-μ-10-(4-carboxyphenyl)-4,4'-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6-diyl)dibenzoato], [Cd(CHNO)(HO)], I, and poly[[μ-4,4',4''-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoato](μ-hydroxido)zinc(II)], [Zn(CHNO)(OH)], II, were synthesized. Single-crystal analysis revealed that both MOFs adopt a 3D structure. In I, partly deprotonated HL behaves as a bidentate ligand to link a Cd ion to form a one-dimensional chain. In the solid state of I, the existence of weak interactions, such as O-H...O hydrogen bonds and π-π interactions, plays an essential role in aligning 2D nets and 3D networks with AB packing patterns for I. The deprotonated ligand L in II is utilized as a tridentate building block to bind Zn ions to construct 3D networks, where unusual ZnO clusters act as connection nodes. As a donor-acceptor molecule, HL exhibits fluorescence with a photoluminescence quantum yield (PLQY) of 70% in the solid state. In comparison, the PL of both MOFs is red-shifted with even higher PLQYs of 79 and 85% for I and II, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229620006488DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
donor-acceptor motif
8
hydrogen bonds
8
solid state
8
syntheses structures
4
structures novel
4
novel fluorescent
4
fluorescent metal-organic
4
frameworks generated
4
generated tridentate
4

Similar Publications

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation.

Nat Commun

December 2024

Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.

The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a class of porous materials that are of topical interest for their utility in water-related applications. Nevertheless, molecular-level insight into water-MOF interactions and MOF hydrolytic reactivity remains understudied. Herein, we report two hydrolytic pathways leading to either structural stability or framework decomposition of a MOF (ZnMOF-1).

View Article and Find Full Text PDF

Robust Immobilization and Activity Preservation of Enzymes in Porous Frameworks by Silica-Based "Inorganic Glue".

Adv Mater

December 2024

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.

The development of novel methods to enhance enzyme-carrier interactions in situ, at a feasible cost, and on a large scale is crucial for improving the stability and durability of current immobilized enzyme systems used in industrial settings. Here, a pioneering approach termed "silica-based inorganic glue" is proposed, which utilizes protein-catalyzed silicification to fix enzyme within porous matrix while preserving enzyme activity. This innovative strategy offers several key benefits, including conformational stabilization of enzymes, improved interactions between enzymes and the matrix, prevention of enzyme leakage, and mitigation of pore blocking.

View Article and Find Full Text PDF

Temperature-Robust Broadband Metamaterial Absorber via Semiconductor MOFs/Paraffin Hybridization.

Small

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!