1-(Chloromethyl)-3-nitrobenzene, CHNClO, and 1-(bromomethyl)-3-nitrobenzene, CHNBrO, were chosen as test compounds for benchmarking anisotropic displacement parameters (ADPs) calculated from first principles in the harmonic approximation. Crystals of these compounds are isomorphous, and theory predicted similar ADPs for both. In-house diffraction experiments with Mo Kα radiation were in apparent contradiction to this theoretical result, with experimentally observed ADPs significantly larger for the bromo derivative. In contrast, the experimental and theoretical ADPs for the lighter congener matched reasonably well. As all usual quality indicators for both sets of experimental data were satisfactory, complementary diffraction experiments were performed at a synchrotron beamline with shorter wavelength. Refinements based on these intensity data gave very similar ADPs for both compounds and were thus in agreement with the earlier in-house results for the chloro derivative and the predictions of theory. We speculate that strong absorption by the heavy halogen may be the reason for the observed discrepancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273188 | PMC |
http://dx.doi.org/10.1107/S2053229620006221 | DOI Listing |
IUCrJ
January 2025
Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland.
X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
In biological systems such as cells, the macromolecules, which are anisotropic particles, diffuse in a crowded medium. In the present work, we have studied the diffusion of spheroidal particles diffusing between cylindrical obstacles by varying the density of the obstacles as well as the spheroidal particles. Analytical calculation of the free energy showed that the orientational vector of a single oblate particle will be aligned perpendicular, and a prolate particle will be aligned parallel to the symmetry axis of the cylindrical obstacles in equilibrium.
View Article and Find Full Text PDFChemistry
December 2024
College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China.
Photomechanical crystals act as light-driven material-machines that can convert the energy carried by photons into kinetic energy via shape deformation or displacement, and this capability holds a paramount significance for the development of photoactuated devices. This transformation is usually attributed to anisotropic expansion or contraction of the unit cell engendered by light-induced structural modifications that lead to accumulation and release of stress that generates a momentum, resulting in readily observable mechanical effects. Among the available photochemical processes, the photoinduced [2+2] and [4+4] reactions are known for their robustness, predictability, amenability to control with molecular and supramolecular engineering approaches, and efficiency that has already been elevated to a proof-of-concept smart devices based on organic crystals.
View Article and Find Full Text PDFACS Photonics
December 2024
Department of Information in Matter and Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Resolving structural misalignments on the nanoscale is of utmost importance in areas such as semiconductor device manufacturing. Metaphotonics provides a powerful toolbox to efficiently transduce information on the nanoscale into measurable far-field observables. In this work, we propose and demonstrate a novel interlaced displacement sensing platform based on diffractive anisotropic metasurfaces combined with polarimetric Fourier microscopy capable of resolving a few nanometer displacements within a device layer.
View Article and Find Full Text PDFRadiat Oncol
December 2024
Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
Purpose: The purpose of this study was to quantify the intra- and interfraction motion of the target volume and organs at risk (OARs) during adaptive radiotherapy (ART) for uterine cervical cancer (UCC) using MR-Linac and to identify appropriate UCC target volume margins for adapt-to-shape (ATS) and adapt-to-position (ATP) workflows. Then, the dosimetric differences caused by motion were analyzed.
Methods: Thirty-two UCC patients were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!