A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A recurrent neural network approach to predicting hemoglobin trajectories in patients with End-Stage Renal Disease. | LitMetric

A recurrent neural network approach to predicting hemoglobin trajectories in patients with End-Stage Renal Disease.

Artif Intell Med

Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States.

Published: April 2020

The most severe form of kidney disease, End-Stage Renal Disease (ESRD) is treated with various forms of dialysis - artificial blood cleansing. Dialysis patients suffer many health burdens including high mortality and hospitalization rates, and symptomatic anemia: a low red blood cell count as indicated by a low hemoglobin (Hgb) level. ESRD-induced anemia is treated, with variable patient response, by erythropoiesis stimulating agents (ESAs): expensive injectable medications typically administered during dialysis sessions. The dosing protocol is typically a population level protocol based on original clinical trials, the use of which often results in Hgb cycling. This cycling phenomenon occurs primarily due to the mismatch in the time between dosing decisions and the time it takes for the effects of a dosing change to be fully realized. In this paper we develop a recurrent neural network approach that uses historic data together with future ESA and iron dosing data to predict the 1, 2, and 3 month Hgb levels of patients with ESRD-induced anemia. The results of extensive experimentation indicate that this approach generates predictions that are clinically relevant: the mean absolute error of the predictions is comparable to estimates of the intra-individual variability of the laboratory test for Hgb.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2020.101823DOI Listing

Publication Analysis

Top Keywords

recurrent neural
8
neural network
8
network approach
8
end-stage renal
8
renal disease
8
esrd-induced anemia
8
approach predicting
4
predicting hemoglobin
4
hemoglobin trajectories
4
trajectories patients
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!