Rapid quantification of pathogenic Salmonella Typhimurium (S. Typhimurium) and total bacteria in eggs is highly desired for food safety control. However, the complexity of egg matrix presents a significant challenge for sensitive detection of bacteria. In this study, a sample pretreatment protocol, including dilution, fat dissolution, protein degradation, filtration, and washing was developed to circumvent this challenge. A laboratory-built nano-flow cytometer (nFCM) that is hundreds of fold more sensitive than the conventional flow cytometer was employed to analyze individual bacteria upon nucleic acid and immunofluorescent staining. Eggs spiked with pathogenic S. Typhimurium and harmless Escherichia coli K12 (E. coli K12) were used as the model system to optimize the sample pretreatment protocol. S. Typhimurium and total bacteria in eggs can be quantified without cultural enrichment, and the whole process of sample pretreatment, staining, and instrument analysis can be accomplished within 1.5 h. The bacterial recovery rate upon sample pretreatment, detection limit, and dynamic range for S. Typhimurium in eggs were 92%, 2 × 10 cells/mL, and from 2 × 10 to 4 × 10 cells/mL, respectively. The as-developed approach can specifically distinguish S. Typhimurium from other bacteria and successful application to bacterial detection in eggs freshly purchased from supermarket and spoiled eggs upon inappropriate storage was demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.121020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!