Quantitative Metabonomic Phenotypes in Different Structures of Mung Bean () Seeds and Their Germination-Associated Dynamic Changes.

J Proteome Res

State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China.

Published: August 2020

Plant seed germination involving dynamic water uptakes and biochemical changes is essential for preservation of plant germplasm resource and worldwide food supply. To understand the germination-associated compartmental biochemistry changes, we quantitatively analyzed the metabolite composition (metabonome) for embryonic axes, cotyledons, and testae of mung bean () seeds in three germination phases using the NMR-based metabonomics approach. We found that three structures of mung bean seeds had distinct metabonomic phenotypes dominated by 53 metabolites including amino acids, carbohydrates, organic acids, choline metabolites, nucleotides/nucleosides, and shikimate-mediated secondary metabolites together with calcium and magnesium cations. During germination, all three seed structures had outstanding but distinct metabonomic changes. Both embryonic axis and cotyledon showed remarkable metabolic changes related to degradation of carbohydrates and proteins, metabolism of amino acids, nucleotides/nucleosides, and choline together with energy metabolism and shikimate-mediated plant secondary metabolism. The metabonomic changes in these two structures were mostly related to multiple functions for biochemical activities in the former and nutrient mobilizations in the latter. In contrast, testa metabonomic changes mainly reflected the metabolite leakages from the other two structures. Phase 1 of germination was featured with degradation of oligosaccharides and proteins and recycling of stored nucleic acids together with anaerobic metabolisms, whereas phase 2 was dominated by energy metabolism, biosynthesis of osmolytes, and plant secondary metabolites. These provided essential metabolic information for understanding the biochemistry associated with early events of seed germination and possible metabolic functions of different seed structures for plant development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.0c00236DOI Listing

Publication Analysis

Top Keywords

mung bean
12
bean seeds
12
metabonomic changes
12
metabonomic phenotypes
8
structures mung
8
seed germination
8
distinct metabonomic
8
amino acids
8
secondary metabolites
8
seed structures
8

Similar Publications

A varietal origin of eugenol was previously demonstrated in Baco blanc, a major grapevine variety used to produce Armagnac wine spirits. Eugenol was found in high amount, both as the free and as unidentified glycosylated forms. To reveal their identity, a specific method was developed and applied to berry skin extracts.

View Article and Find Full Text PDF

Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.

Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.

Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.

View Article and Find Full Text PDF

The feasibility of the two methodologies was confirmed to compare the results of determining mung bean origins using Raman and Near-Infrared (NIR) spectroscopy. Spectra from mung beans collected in Baicheng City, Jilin Province; Dorbod Mongol Autonomous, Tailai County, Heilongjiang Province; and Sishui County, Shandong Province, China, were analyzed. We established a traceability model using Principal Component Analysis combined with the K-nearest neighbor method to compare the efficacy of these methods in discriminating the origins of the mung beans.

View Article and Find Full Text PDF

Characterization of dynamic of the structural changes of legume starches during gelatinization.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

This study investigated the dynamic changes in legume starches (common vetch, mung bean, and pea) during gelatinization. All three starches displayed a similar pattern: water absorption and swelling at lower temperatures (50-65 °C), structural rupture at medium temperatures (65-75 °C), and melting/reorganization at higher temperatures (75-90 °C). Gelatinization likely starts with internal structural dissociation, as evidenced by the weakening of the double helix structure and decreasing order observed throughout the process.

View Article and Find Full Text PDF

Robotic Bronchoplasty for Iatrogenic Bronchial Rupture After Endotracheal Tube Placement.

Ann Thorac Surg Short Rep

December 2024

Division of Thoracic and Cardiovascular Surgery, Lahey Hospital, Burlington, Massachusetts.

The double-lumen endotracheal tube (DLT) was introduced by Carlens in 1949 and became widely used for single-lung ventilation. DLTs have since become standard for most pulmonary resections. Although the use of DLTs is routine and safe in experienced hands, it is not without risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!