A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Image-based quantification of soil microbial dead zones induced by nitrogen fertilization. | LitMetric

Image-based quantification of soil microbial dead zones induced by nitrogen fertilization.

Sci Total Environ

Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK. Electronic address:

Published: July 2020

Microbial communities in agricultural soils underpin many ecosystem services including the maintenance of soil structure, food production, water purification and carbon storage. However, the impact of fertilization on the health of microbial communities is not well understood. This study investigates the spatial and temporal dynamics of nitrogen (N) transport away from a fertilizer granule with pore scale resolution. Specifically, we examined how soil structure and moisture content influence fertilizer derived N movement through the soil pore network and the subsequent impact of on soil microbial communities. We develop a mathematical model to describe N transport and reactions in soil at the pore-scale. Using X-ray Computed Tomography scans, we reconstructed a microscale description of a soil-pore geometry as a computational mesh. Solving two-phase water/air model produced pore-scale water distributions at 15, 30 and 70% water-filled pore volume. The N-speciation model considered ammonium (NH), nitrate (NO) and dissolved organic N (DON), and included N immobilization, ammonification and nitrification processes, as well as diffusion in soil solution. We simulated the dissolution of a fertilizer pellet and a pore scale N cycle at three different water saturations. To aid interpretation of the model results, microbial activity at a range of N concentrations was measured. The model showed that the diffusion and concentration of N in water films is critically dependent upon soil moisture and N species. We predict that the maximum NH and NO concentrations in soil solution around the pellet under dry conditions are in the order of 1 × 10 and 1 × 10 mol m respectively, and under wet conditions 2 × 10 and 1 × 10 mol m, respectively. Supporting experimental evidence suggests that these concentrations would be sufficient to reduce microbial activity in the short-term in the zone immediately around the fertilizer pellet (ranging from 0.9 to 3.8 mm), causing a major loss of soil biological functioning. This model demonstrates the importance of pore-scale processes in regulating N movement and their interactions with the soil microbiome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138197DOI Listing

Publication Analysis

Top Keywords

microbial communities
12
soil
11
soil microbial
8
soil structure
8
pore scale
8
soil solution
8
fertilizer pellet
8
microbial activity
8
microbial
6
model
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!