Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microplastics are ubiquitous to most marine environments worldwide, and their management has become one of the major challenges facing stakeholders. Here we monitored monthly, between March 2018 and March 2019, the abundance of microplastics (0.3-18.2 mm) at the sea surface within the Kiel Fjord, southwest Baltic Sea. Microplastics were sampled at eight locations, inside and outside the fjord, near potential source of microplastics, such as the outlets of storm drains or the Kiel-Bülk wastewater treatment plant, the Schwentine River mouth and the entrance of the Kiel Canal. Weather (wind, precipitations) and seawater (salinity, temperature) parameters were compared to the spatiotemporal distribution of the microplastics. We found an overall stable, and low (0.04 particles/m), microplastic load within the Kiel Fjord compared to other urban areas worldwide with comparable population densities. No relationship was found between the microplastic abundance and the environmental factors, but the few samples that yielded unusually high amount of microplastics were all preceded by rainfall and snow/ice melt. During such events, vast amounts of water, potentially contaminated with microplastics, were released into the fjord via the storm drainage system. The microplastic abundances at the wastewater plant outflow were among the lowest of our survey, likely thanks to an efficient filtering system. The results of this study highlight the importance to repeat microplastic samplings over time and space to determine with confidence baseline microplastic abundance and to detect unusual acute contamination, especially during snow and ice melting. Overall, the microplastic abundance within the Kiel Fjord was low, probably thanks to efficient waste management on land. However, improvements are still needed to filter millimetre-sized particles within the storm drainage system, which is likely a major source of microplastics into the marine environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.139493 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!