A series of tricarbonyl manganese complexes bearing 4-ethynyl-2,2'-bipyridine and 5-ethynyl-1,10-phenanthroline α-diimine ligands were synthetized, characterized and conjugated to vitamin B, previously used as a vector for drug delivery, to take advantage of its water solubility and specificity toward cancer cells. The compounds act as photoactivatable carbon monoxide-releasing molecules rapidly liberating on average ca. 2.3 equivalents of CO upon photo-irradiation. Complexes and conjugates were tested for their anticancer effects, both in the dark and following photo-activation, against breast cancer MCF-7, lung carcinoma A549 and colon adenocarcinoma HT29 cell lines as well as immortalized human bronchial epithelial cells 16HBE14o- as the non-carcinogenic control. Our results indicate that the light-induced cytotoxicity these molecules can be attributed to both their released CO and to their CO-depleted metal fragments including liberated ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2020.111122DOI Listing

Publication Analysis

Top Keywords

cell lines
8
co-depleted metal
8
metal fragments
8
cytotoxicity mn-based
4
mn-based photocorms
4
photocorms ethynyl-α-diimine
4
ethynyl-α-diimine ligands
4
ligands cancer
4
cancer cell
4
lines key
4

Similar Publications

Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.

Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.

View Article and Find Full Text PDF

Follicular lymphoma is the most common subtype of indolent lymphoma. Despite multiple trials over the past decade showing improved progression-free survival with new first-line therapeutic strategies -such as anti-CD20 maintenance therapy and new glycoengineered anti-CD20 antibodies- no standardized approach has been widely adopted in routine clinical practice. Several factors may explain this, including the increased incidence of infectious adverse events associated with these therapies, particularly during the COVID-19 pandemic, and the lack of overall survival benefit despite long-term follow-up.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!