Buckling Resistance of Various Nickel-Titanium Glide Path Preparation Instruments in Dynamic or Static Mode.

J Endod

Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Pusan National University, Yangsan, Korea. Electronic address:

Published: August 2020

Introduction: The aim of this study was to compare the buckling resistance of nickel-titanium (NiTi) instruments for glide path preparation depending on the test mode (static vs dynamic).

Methods: The conventional PathFile (PF; Dentsply Sirona, Ballaigues, Switzerland) and heat-treated ProGlider (PG, Dentsply Sirona) and WaveOne Gold Glider (WG, Dentsply Sirona) were evaluated. The instrument tips were placed in a small dimple prepared in an aluminum cube in a customized device. The file was then pushed in the axial direction at a 1.0-mm/s crosshead speed with rotation (dynamic mode) or without rotation (static mode). The dynamic mode of WG used its dedicated reciprocating rotation, whereas the others were rotated continuously at 300 rpm. The axial load and lateral buckling displacement were simultaneously measured. Data were analyzed statistically using 2-way analysis of variance (P = .05).

Results: The buckling resistance in the dynamic mode was higher than in the static mode for PG and WG (P < .05), whereas PF was not influenced by test modes (P > .05). In the dynamic mode, the PG required the highest buckling load followed by PF and WG (P < .05). In the static mode, the WG showed the lowest load (P < .05). The dynamic mode showed significantly more upper level lateral buckling displacement than in the static mode (P < .05).

Conclusions: When the glide path preparation instruments moved in the dynamic mode as in clinical situations, the buckling resistance of the heat-treated NiTi glide path instruments was higher than in the static condition. The heat-treated instruments may have better buckling resistance than the conventional NiTi instrument in clinical situations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2020.05.006DOI Listing

Publication Analysis

Top Keywords

dynamic mode
24
buckling resistance
20
static mode
20
glide path
16
path preparation
12
mode
12
dentsply sirona
12
buckling
8
resistance nickel-titanium
8
preparation instruments
8

Similar Publications

Active Ingredients and Potential Mechanism of Additive Sishen Decoction in Treating Rheumatoid Arthritis with Network Pharmacology and Molecular Dynamics Simulation and Experimental Verification.

Drug Des Devel Ther

January 2025

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People's Republic of China.

Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear.

Methods: To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks.

View Article and Find Full Text PDF

The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Atomistic Insights Into Interaction of Doxorubicin With DNA: From Duplex to Nucleosome.

J Comput Chem

January 2025

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.

Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.

View Article and Find Full Text PDF

The interplay between attractive London dispersion forces and steric effects due to repulsive forces resulting from the Pauli principle often determines the geometry and stability of nanostructures. Aromatic polyimides (PI) and carbon nanotubes (CNT) were chosen as building blocks as two components in the hetero delocalized electron nanostructures. Two PIs, having the same diamine part and different linkage substituents between two phenyl rings of dianhydride part, one linked with ether bond (C-O-C) (OPI), the other with C-(CF3)2 (FPI), were investigated.

View Article and Find Full Text PDF

Dynamic cycles between brain states during creative storytelling.

Neuroimage

January 2025

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China. Electronic address:

Many theories suggest that creative thinking involves a dynamic transition between different mental states, yet empirical evidence supporting this notion remains scarce. The dual process model proposes that spontaneous thinking and deliberate thinking drive the dwell in and the transitions between different mental states during creative thinking, but there is a debate over whether the two types of thinking operate in parallel or in sequence. To address these gaps, we conducted a functional magnetic resonance imaging (fMRI) study in 41 college students during a creative storytelling task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!