Nanomodified strategies to overcome EGFR-tyrosine kinase inhibitors resistance in non-small cell lung cancer.

J Control Release

Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; The Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan. Electronic address:

Published: August 2020

Lung cancer is the primary cause of cancer-related death worldwide. 85%-90% of cases are non-small cell lung cancer (NSCLC) which characteristically exhibits altered epidermal growth factor receptor (EGFR) signaling is a major driver pathway. Unfortunately, therapeutic outcomes in treating NSCLC are compromised by the emergence of drug resistance in response to EGFR-tyrosine kinase inhibitor (TKI) targeted therapy due to the acquired resistance mutation EGFR T790M or activation of alternative pathways. There is current need for a new generation of TKIs to be developed to treat EGFR-TKI-resistant NSCLC. To overcome the above problems and improve clinical efficacy, nanotechnology with targeting abilities and sustained release has been proposed for EGFR-TKI-resistant NSCLC treatment and has already achieved success in in vitro or in vivo models. In this review, we summarize and illustrate representative nano-formulations targeting EGFR-TKI-resistant NSCLC. The described advances may pave the way to better understanding and design of nanocarriers and multifunctional nanosystems for efficient treatment for drug resistant NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.05.043DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
egfr-tki-resistant nsclc
12
egfr-tyrosine kinase
8
non-small cell
8
cell lung
8
nsclc
6
nanomodified strategies
4
strategies overcome
4
overcome egfr-tyrosine
4
kinase inhibitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!