Epigenetic potential, defined as the capacity for epigenetically-mediated phenotypic plasticity, may play an important role during range expansions. During range expansions, populations may encounter relatively novel challenges while experiencing lower genetic diversity. Phenotypic plasticity via epigenetic potential might be selectively advantageous at the time of initial introduction or during spread into new areas, enabling introduced organisms to cope rapidly with novel challenges. Here, we asked whether one form of epigenetic potential (i.e., the abundance of CpG sites) in three microbial surveillance genes: Toll-like receptors (TLRs) 1B (TLR1B), 2A (TLR2A), and 4 (TLR4) varied between native and introduced house sparrows (Passer domesticus). Using an opportunistic approach based on samples collected from sparrow populations around the world, we found that introduced birds had more CpG sites in TLR2A and TLR4, but not TLR1B, than native ones. Introduced birds also lost more CpG sites in TLR1B, gained more CpG sites in TLR2A, and lost fewer CpG sites in TLR4 compared to native birds. These results were not driven by differences in genetic diversity or population genetic structure, and many CpG sites fell within predicted transcription factor binding sites (TFBS), with losses and gains of CpG sites altering predicted TFBS. Although we lacked statistical power to conduct the most rigorous possible analyses, these results suggest that epigenetic potential may play a role in house sparrow range expansions, but additional work will be critical to elucidating how epigenetic potential affects gene expression and hence phenotypic plasticity at the individual, population, and species levels.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/icaa060DOI Listing

Publication Analysis

Top Keywords

cpg sites
28
epigenetic potential
24
native introduced
12
phenotypic plasticity
12
range expansions
12
house sparrows
8
sparrows passer
8
passer domesticus
8
play role
8
novel challenges
8

Similar Publications

Bivalent OX40 Aptamer and CpG as Dual Agonists for Cancer Immunotherapy.

ACS Appl Mater Interfaces

January 2025

College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.

Cancer immunotherapy has revolutionized cancer treatment by harnessing the body's immune system to recognize and attack tumors. Over the past 25 years, the use of blocking antibodies has fundamentally transformed the landscape of cancer therapy. However, despite extensive research, agonist antibodies targeting costimulatory receptors such as ICOS, GITR, OX40, CD27, and 4-1BB have consistently underperformed in clinical trials over the past 15 years, failing to meet the anticipated success.

View Article and Find Full Text PDF

The topography of nullomer-emerging mutations and their relevance to human disease.

Comput Struct Biotechnol J

December 2024

Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.

Nullomers are short DNA sequences (11-18 base pairs) that are absent from a genome; however, they can emerge due to mutations. Here, we characterize all possible putative human nullomer-emerging single base pair mutations, population variants and disease-causing mutations. We find that the primary determinants of nullomer emergence in the human genome are the presence of CpG dinucleotides and methylated cytosines.

View Article and Find Full Text PDF

Background: Sarcomas (SARC) are a diverse group of malignant tumors originating from mesenchymal tissues, characterized by poor prognosis under conventional therapies. CX3CR1, a chemokine receptor involved in immune cell migration, has emerged as a key player in SARC. Post-translational modifications (PTMs) such as phosphorylation and ubiquitination critically modulate CX3CR1, influencing cancer progression, immune responses, and treatment resistance.

View Article and Find Full Text PDF

The implementation of site-specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low-throughput enrichment strategies, such as cell sorting.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally over multiple time-points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!