The burden of enteric pathogens in poultry is growing after the ban of antibiotic use in animal production. Organic acids gained attention as a possible alternative to antibiotics due to their antimicrobial activities, improved nutrient metabolism and performance. The current study was conducted to evaluate the effectiveness of organic acid blend on broilers cecal microbiota, histomorphometric measurements, and short-chain fatty acid production in Salmonella enterica serovar Typhimurium challenge model. Birds were divided into four treatments, including a negative control, positive control challenged with S. Typhimurium, group supplemented with an organic acid blend, and birds supplemented with organic acid blend and Salmonella challenged. Results illustrate significant differences in feed conversion ratios and production efficiency factor between treatment groups, however, the influence of organic acid supplement was marginal. Organic acid blend significantly increased cecal acetic and butyric acids concentrations when compared to unsupplemented groups and resulted in minor alterations of intestinal bacterial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272039PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232831PLOS

Publication Analysis

Top Keywords

organic acid
24
acid blend
20
enterica serovar
8
serovar typhimurium
8
supplemented organic
8
organic
7
acid
6
blend
5
blend supplementation
4
supplementation increases
4

Similar Publications

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

We demonstrate the application of mechanochemistry in the synthesis of indolone-based photoswitches (hemiindigos, hemithioindigos, and oxindoles) via Knoevenagel condensation reactions. Utilizing ball-milling and an organic base (piperidine) acting as catalyst and solvent for liquid assisted grinding (LAG) conditions, we achieve rapid, solvent-free transformations, obtaining a set of known and previously unreported photoswitches, including highly functional amino acid-based photoswitches, multichromophoric derivatives and photoswitchable cavitands based on resorcin[4]arenes. The reaction under mechanochemical conditions gives moderate-to-high yields and is highly stereoselective leading to Z-isomers of hemiindigos and hemithioindigos and E-isomers of oxindoles.

View Article and Find Full Text PDF

CO-templated [LnNi] heterometallic compounds for enhanced magnetocaloric effects at low fields.

Dalton Trans

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.

View Article and Find Full Text PDF

4-O-Methylglucuronoxylan from Hygrophila Ringens var. Ringens Seeds: Chemical Composition and Anti-Inflammatory Activity.

Macromol Biosci

January 2025

Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743, Jena, Germany.

Hygrophila ringens var. ringens is a medicinal plant of the Acanthaceae family. A soluble polysaccharide is extracted from H.

View Article and Find Full Text PDF

Lipophilicity and acidity/basicity are fundamental physical properties that profoundly affect the compound's pharmacological activity, bioavailability, metabolism, and toxicity. Predicting lipophilicity, measured by (1-octanol-water distribution coefficient logarithm), and acidity/basicity, measured by (negative of acid ionization constant logarithm), is essential for early drug discovery success. However, the limited availability of experimental data and poor accuracy of standard and assessment methods for saturated fluorine-containing derivatives pose a significant challenge to achieving satisfactory results for this compound class.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!