Nutritional Programming (NP) has been studied as a means of mitigating the negative effects of dietary plant protein (PP), but the optimal timing and mechanism behind NP are still unknown. The objectives of this study were: 1) To determine whether zebrafish (Danio rerio) can be programmed to soybean meal (SBM) through early feeding and broodstock exposure to improve SBM utilization; 2) To determine if NP in zebrafish affects expression of genes associated with intestinal nutrient uptake; 3) To determine if early stage NP and/or broodstock affects gene expression associated with intestinal inflammation or any morphological changes in the intestinal tract that might improve dietary SBM utilization. Two broodstocks were used to form the six experimental groups. One broodstock group received fishmeal (FM) diet (FMBS), while the other was fed ("programmed with") SBM diet (PPBS). The first ((+) Control) and the second group ((-) Control) received FM and SBM diet for the entire study, respectively, and were progeny of FMBS. The last four groups consisted of a non-programmed (FMBS-X-PP and PPBS-X-PP) and a programmed group (FMBS-NP-PP and PPBS-NP-PP) from each of the broodstocks. The programming occurred through feeding with SBM diet during 13-23 dph. The non-control groups underwent a PP-Challenge, receiving SBM diet during 36-60 dph. During the PP-Challenge, both PPBS groups experienced significantly lower weight gains than the (+) Control group. NP in early life stages significantly increased the expression of PepT1 in PPBS-NP-PP, compared to PPBS-X-PP. NP also tended to increase the expression of fabp2 in the programmed vs. non-programmed groups of both broodstocks. The highest distal villus length-to-width ratio was observed in the dual-programmed group, suggesting an increase in surface area for nutrient absorption within the intestine. The results of this study suggest that NP during early life stages may increase intestinal absorption of nutrients from PP-based feeds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272038 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228758 | PLOS |
Poult Sci
December 2024
Department of Animal Sciences, University of Illinois, Urbana 6180. Electronic address:
The objective was to test the hypothesis that nitrogen-corrected true metabolizable energy (TME), standardized amino acid (AA) digestibility, and apparent ileal P digestibility are not different in soybean expellers produced from high-oil soybeans (SBE-HO) compared with expellers produced from conventional soybeans (SBE-CV). The two soybean expellers contained approximately 46.3 % crude protein (DM basis).
View Article and Find Full Text PDFAnimals (Basel)
November 2024
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
Experiments were conducted to investigate the effects of extrusion devices on the available energy and nutrient digestibility of soybean meal (SBM), and further to investigate the impact of different levels of extruded SBM on the growth performance and nutrient digestibility of weaned piglets. In Exp. 1, eighteen crossbreed growing pigs with an initial body weight (BW) of 32.
View Article and Find Full Text PDFAnim Nutr
December 2024
Department of Poultry Science, University of Georgia, Athens, GA, USA.
Poult Sci
November 2024
Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China. Electronic address:
Fish Shellfish Immunol
November 2024
The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!