The impacts of lipid physical state and content on lipid digestion behavior were investigated using 4 and 20% palm olein-in-water emulsions (4% PO and 20% PO) and 4 and 20% palm stearin-in-water emulsions (4% PS and 20% PS). The changes of lipid physical state, particle size, and microstructure during gastrointestinal digestion; the free fatty acid (FFA) released in the intestinal phase; and the fatty acid composition of micellar phases were investigated. After gastric digestion, all emulsions underwent flocculation and coalescence, with 20% PS showing the most extensive aggregation. During intestinal digestion, the FFA release rate and level decreased as the lipid content increased from 4 to 20%, with 4% PO presenting the highest digestion rate and extent. Besides, the solid fat in 4% PS and 20% PS decreased and increased the maximum lipid digestibility, respectively. These results highlighted the combined roles of lipid physical state and content in modulating dietary lipid digestion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c00212DOI Listing

Publication Analysis

Top Keywords

lipid physical
12
physical state
12
gastrointestinal digestion
8
palm stearin-in-water
8
stearin-in-water emulsions
8
state content
8
lipid digestion
8
20% palm
8
emulsions 20%
8
fatty acid
8

Similar Publications

Solid magnetic liposomes (ML, nanocomposites comprising lipid bilayers that incorporate magnetic nanoparticles) may be used in wastewater remediation: the lipid bilayer creates an environment where organic pollutants preferentially partition instead of water and the manipulation of ML with an external magnet enables an easy recovery from water. This study aimed to assess the system's potential for water remediation, focusing on ML ability to remove common pollutants in industrial wastewater. Specifically, alkylphenol ethoxylates (APEO) were used as the archetype for organic pollutants.

View Article and Find Full Text PDF

Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.

View Article and Find Full Text PDF

Autophagosomes coated in situ with nanodots act as personalized cancer vaccines.

Nat Nanotechnol

January 2025

Department of Urology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Autophagosome cancer vaccines can promote cross-presentation of multiple tumour antigens and induce cross-reactive T cell responses. However, so far, there is no effective method for obtaining a highly immunogenic autophagosomal cancer vaccine because autophagosomes, once formed, quickly fuse with lysosomes and cannot easily escape from cells. Here we report a functional TiNX nanodot that caps the autophagosome membrane lipid phosphatidylinositol-4-phosphate, blocking the fusion of autophagosomes with lysosomes and producing stable nanodot-coated autophagosomes in tumours.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.

View Article and Find Full Text PDF

Background: Elevated arterial pulse pressure (PP) is associated with cognitive decline and Alzheimer's disease (AD). High PP damages the brain vasculature by causing endothelial cell dysfunction. Stiffer cerebral arteries have an impaired ability to dampen PP, which transmits the pulsatility further into the microvasculature, where it can damage brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!