Introduction: Rabies caused by the neurotropic virus of the genus Lyssavirus, Rhabdoviridae family, which infects all warm-blooded vertebrates including human beings. The homology level of the amino acid sequences for Lyssaviruses nucleoprotein reaches 78-93%. Aim - study the genetic diversity and molecular epidemiology of Lyssaviruses circulated in the Russian Federation in 1985-2016.
Material And Methods: 54 isolates of rabies virus isolated from animals, and 2 isolates from humans, 4 vaccine strains of rabies virus: RV-97, ERA, Shchelkovo 51, ERAG333 used in phylogenetic study. Phylogenetic analysis was performed using Genbank data on genome fragments of 73 rabies virus isolates and 9 EBLV-1 isolates. DNASTAR V.3.12, Bio Edit 7.0.4.1 and MEGA v.10.0.5, Primer Premier 5 programs have been used.
Results: Comparative molecular genetic analysis of genomes fragments of 130 Lissaviruses, isolated on the territory of the RF, Ukraine in 1985-2016, vaccine strains of rabies virus, showed their distribution by geographical feature. Comparison of the nucleoprotein fragments of the rabies virus isolates with vaccine strains revealed 4 marker mutations: V56I (Eurasian group), L/V95W (Central group), D101N/S/T, and N/G106D. Phylogenetic analysis of the isolate «Juli», isolated from a human bitten by a bat proved his belonging to the European Bat lyssavirus-1a.
Discussion: Study of the molecular epidemiology of rabies within the Russian Federation allows for the genotyping of the viruses and helps to study the hidden mechanisms of rabies infection in animal and human populations, and to characterize vaccine strains, including during oral vaccination.
Conclusion: Further study of the molecular epidemiology of rabies within the Russian Federation and the countries bordering it is important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.36233/0507-4088-2020-65-1-41-48 | DOI Listing |
Nat Commun
December 2024
Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
Rabies is a viral zoonosis that kills thousands of people annually in low- and middle-income countries across Africa and Asia where domestic dogs are the reservoir. 'Zero by 30', the global strategy to end dog-mediated human rabies, promotes a One Health approach underpinned by mass dog vaccination, post-exposure vaccination of bite victims, robust surveillance and community engagement. Using Integrated Bite Case Management (IBCM) and whole genome sequencing (WGS), we enhanced rabies surveillance to detect an outbreak in a formerly rabies-free island province in the Philippines.
View Article and Find Full Text PDFAntiviral Res
December 2024
Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia. Electronic address:
The Phosphoprotein (P protein) of the rabies virus has multiple roles in virus replication. A critical function is to act as a cofactor in genome replication and mRNA production through binding via its N-terminal region to the L protein, the essential enzyme for mRNA and genome synthesis/processing, and via its C-terminal domain (P) to the N protein and viral RNA (N-RNA) ribonucleoprotein complex. The binding site of the P on the N protein is a disordered loop that is expected to be phosphorylated at Ser389.
View Article and Find Full Text PDFClin Immunol
December 2024
Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Republic of Korea. Electronic address:
Over the last decade, mRNA vaccines development has shown significant advancement, particularly during the COVID-19 pandemic. This comprehensive review examines the efficacy of pivotal vaccines against emerging COVID-19 variants and strategies for enhancing vaccine effectiveness. It also explores the versatility of mRNA technology in addressing other infectious diseases such as influenza, respiratory syncytial virus, HIV, cytomegalovirus, Ebola, Zika, Rabies, and Nipah viruses.
View Article and Find Full Text PDFJ Control Release
December 2024
Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213003, China. Electronic address:
Rationale: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene play an important role in Parkinson's disease (PD) pathogenesis, and downregulation of LRRK2 has become a promising therapy for PD. Here, we developed a synthetic biology strategy for the self-assembly and delivery of small interfering RNAs (siRNAs) of LRRK2 into the substantia nigra via small extracellular vesicles (sEVs) using a genetic circuit (in the form of naked DNA plasmid) to attenuate PD-like phenotypes in mouse model.
Methods: We generated the genetic circuit encoding both a neuron-targeting rabies virus glycoprotein (RVG) tag and a LRRK2 siRNA under the control of a cytomegalovirus (CMV) promoter, and assessed its therapeutic effects using LRRK2 mouse models of PD.
Neuron
December 2024
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address:
Motor output results from the coordinated activity of neural circuits distributed across multiple brain regions that convey information to the spinal cord via descending motor pathways. Yet the organizational logic through which supraspinal systems target discrete components of spinal motor circuits remains unclear. Here, using viral transsynaptic tracing along with serial two-photon tomography, we have generated a whole-brain map of monosynaptic inputs to spinal V1 interneurons, a major inhibitory population involved in motor control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!