An aqueous chloride ion battery (CIB) is an emerging technology for electrochemical energy storage as well as battery desalination systems. However, the instability and decomposition of electrode materials in an aqueous medium is a major issue in CIBs. Herein, in one step, we synthesized fine antimony nanoparticles with a size of ∼20 nm on reduced graphene oxide (Sb@rGO) sheets using a hydrothermal route with facile and cost-effective processes. It is proposed as a new anode material and coupled with the AgCl cathode in an aqueous CIB. The specific capacity is maintained constantly at 51.6 mA h g-1 at a current density of 400 mA g-1 even after 200 cycles. In addition, characterization methods such as electrochemical analysis, X-ray diffraction, etc. were used to confirm the reaction mechanism. The chloride ion capture material developed in this research work will be significant for CIBs as an energy storage technology or battery desalination system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr00862a | DOI Listing |
RSC Adv
January 2025
Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo Colombo Sri Lanka
The global scarcity of irrigation-grade water poses severe concerns in the agricultural sector. Desalination techniques including reverse osmosis, electrodialysis, capacitive deionization, membrane filtration, and multi-stage flash are some dynamic solutions to mitigate this challenge. In this study, novel bio-filter materials were explored and developed for the application of membrane-based electrodialysis.
View Article and Find Full Text PDFChem Sci
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA.
Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!