The existence of nontrivial Berry phases associated with two inequivalent valleys in graphene provides interesting opportunities for investigating the valley-projected topological states. Examples of such studies include observation of anomalous quantum Hall effect in monolayer graphene, demonstration of topological zero modes in "molecular graphene" assembled by scanning tunneling microscopy, and detection of topological valley transport either in graphene superlattices or at bilayer graphene domain walls. However, all aforementioned experiments involved nonscalable approaches of either mechanically exfoliated flakes or atom-by-atom constructions. Here, we report an approach to manipulating the topological states in monolayer graphene via nanoscale strain engineering at room temperature. By placing strain-free monolayer graphene on architected nanostructures to induce global inversion symmetry breaking, we demonstrate the development of giant pseudo-magnetic fields (up to ~800 T), valley polarization, and periodic one-dimensional topological channels for protected propagation of chiral modes in strained graphene, thus paving a pathway toward scalable graphene-based valleytronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209983PMC
http://dx.doi.org/10.1126/sciadv.aat9488DOI Listing

Publication Analysis

Top Keywords

monolayer graphene
12
nanoscale strain
8
strain engineering
8
giant pseudo-magnetic
8
pseudo-magnetic fields
8
valley polarization
8
topological channels
8
graphene
8
topological states
8
topological
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!