Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by mitochondrial dysfunction, Lewy body formation, and loss of dopaminergic neurons. Parkin, an E3 ubiquitin ligase, is thought to inhibit PD progression by removing damaged mitochondria and suppressing the accumulation of α-synuclein and other protein aggregates. The present study describes a protein-based therapy for PD enabled by the development of a cell-permeable Parkin protein (iCP-Parkin) with enhanced solubility and optimized intracellular delivery. iCP-Parkin recovered damaged mitochondria by promoting mitophagy and mitochondrial biogenesis and suppressed toxic accumulations of α-synuclein in cells and animals. Last, iCP-Parkin prevented and reversed declines in tyrosine hydroxylase and dopamine expression concomitant with improved motor function induced by mitochondrial poisons or enforced α-synuclein expression. These results point to common, therapeutically tractable features in PD pathophysiology, and suggest that motor deficits in PD may be reversed, thus providing opportunities for therapeutic intervention after the onset of motor symptoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190327 | PMC |
http://dx.doi.org/10.1126/sciadv.aba1193 | DOI Listing |
Free Radic Biol Med
December 2024
Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima, Hiroshima, 7398528, Japan. Electronic address:
Sperm cells are highly susceptible to oxidative stress, which decreases their motility and fertility. However, glutathione (GSH) plays a critical role in protecting sperm cells from oxidative damage, a common byproduct of mitochondrial oxidative phosphorylation. On the other hand, GSH biosynthesis in sperm is limited by the availability of cysteine (Cys), which is inherently unstable and found at low concentrations in boar seminal plasma.
View Article and Find Full Text PDFAnal Chem
December 2024
School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China.
Mitochondrial DNA (mtDNA) damage is a prevalent phenomenon that has been proven to be implicated in a wide spectrum of diseases. However, the progressive attenuation of probe signals in response to mtDNA damage within living cells inherently limits the sensitivity and precision of current probes for detecting mtDNA damage. Herein, we employ an innovative organelle signal ratio imaging approach, utilizing the mitochondria-nucleus migration probe MCQ, to achieve unparalleled sensitivity in detecting mtDNA damage in living cells.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
Ulcerative colitis (UC) is characterised notably by an imbalance in intestinal mucosal homeostasis. Although mitochondrial dysfunction has been identified as a potential contributor to this imbalance, it remains an incomplete understanding. Consequently, further investigation into the role of mitochondria in UC is warranted.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, South Korea.
Podocyte injury and proteinuria in glomerular disease are critical indicators of acute kidney injury progression to chronic kidney disease. Renal mitochondrial dysfunction, mediated by intracellular calcium levels and oxidative stress, is a major contributor to podocyte complications. Despite various strategies targeting mitochondria to improve kidney function, effective treatments remain lacking.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!