Deciphering atomistic mechanisms of the gas-solid interfacial reaction during alloy oxidation.

Sci Adv

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA.

Published: April 2020

Gas-solid interfacial reaction is critical to many technological applications from heterogeneous catalysis to stress corrosion cracking. A prominent question that remains unclear is how gas and solid interact beyond chemisorption to form a stable interphase for bridging subsequent gas-solid reactions. Here, we report real-time atomic-scale observations of Ni-Al alloy oxidation reaction from initial surface adsorption to interfacial reaction into the bulk. We found distinct atomistic mechanisms for oxide growth in O and HO vapor, featuring a "step-edge" mechanism with severe interfacial strain in O, and a "subsurface" one in HO. Ab initio density functional theory simulations rationalize the HO dissociation to favor the formation of a disordered oxide, which promotes ion diffusion to the oxide-metal interface and leads to an eased interfacial strain, therefore enhancing inward oxidation. Our findings depict a complete pathway for the Ni-Al surface oxidation reaction and delineate the delicate coupling of chemomechanical effect on gas-solid interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182408PMC
http://dx.doi.org/10.1126/sciadv.aay8491DOI Listing

Publication Analysis

Top Keywords

interfacial reaction
12
atomistic mechanisms
8
gas-solid interfacial
8
alloy oxidation
8
oxidation reaction
8
interfacial strain
8
interfacial
5
reaction
5
deciphering atomistic
4
gas-solid
4

Similar Publications

Poly(1,3-dioxolane)-Modified Li1.3Al0.3Ti1.7(PO4)3 as the Electrolyte for Enhanced Solid Lithium Metal Batteries.

Chemistry

January 2025

Sichuan University, School of Chemical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China, 610065, Chendu, CHINA.

Li1.3Al0.3Ti1.

View Article and Find Full Text PDF

Controlled and optimized heterogenic interfacial coupling is the key to enhance the electrochemical performance. Herein, for the first time, telluride-based CoS/CoTe heterostructure is reported as a bifunctional catalyst for energy-efficient H generation. Detailed investigations suggest that the heterogenic interfacial coupling leads to superior bifunctional electrochemical performance of the CoS/CoTe heterostructure.

View Article and Find Full Text PDF

Low levels of human norovirus (HuNoV) in food and environment present challenges for nucleic acid detection. This study reported an evaporation-enhanced hydrogel digital reverse transcription loop-mediated isothermal amplification (HD RT-LAMP) with interfacial enzymatic reaction for sensitive HuNoV quantification in food and water. By drying samples on a chamber array chip, HuNoV particles were enriched in situ.

View Article and Find Full Text PDF

Preparation of Octacalcium Phosphate Thin Film with Exposing Reactive Crystalline Plane in Biological Fluid.

ACS Biomater Sci Eng

January 2025

Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.

Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.

View Article and Find Full Text PDF

Polyacrylonitrile (PAN)-based composite solid electrolytes (CSEs) hold great promise in the practical deployment of solid lithium batteries (SLBs) owing to their high voltage stability but suffer from poor stability against Li-metal. Herein, a poly(1,3-dioxolane) (PDOL)-graphitic CN (g-CN, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!