Background: Anaplastic thyroid carcinoma (ATC) is an aggressive type of thyroid cancer, and its metastasis requires cell motility. Ceramide is involved in a variety of biological processes, including inflammation, cell signaling, cell motility, and induction of apoptosis, however has not previously been reported to inhibit the motility of ATC cells. We evaluated the effect of short chain C-ceramide on motility of ATC cells.
Methods: Cell motility of 8305C thyroid carcinoma cell line treated with C-ceramide was assessed using a transwell migration assay and a pseudopodia formation assay.
Results: Treatment with 10 µM C-ceramide resulted in significantly fewer migratory cells than control treatment in a transwell migration assay ( < 0.002). In condition medium, 82.6% of C-ceramide-treated cells formed lamellipodia. Importantly, treatment with 10 µM C-ceramide drastically decreased the number of cells forming lamellipodia by 17.6% ( < 0.01).
Conclusion: Our results suggest that treatment with a low concentration of ceramide may prevent metastasis and recurrence of ATC by inhibiting cell motility. Further studies are necessary to investigate the mechanism of inhibition of cell motility by ceramide. Ceramide shows promise as a therapeutic treatment for ATC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231875 | PMC |
http://dx.doi.org/10.33160/yam.2020.05.001 | DOI Listing |
Pharmacol Res Perspect
February 2025
New Drug Development Center, Daegu, Korea.
Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550000, China.
Background: Human kinesin family member 11 (KIF11) plays a vital role in regulating the cell cycle and is implicated in the tumorigenesis and progression of various cancers, but its role in endometrial cancer (EC) is still unclear. Our current research explored the prognostic value, biological function and targeting strategy of KIF11 in EC through approaches including bioinformatics, machine learning and experimental studies.
Methods: The GSE17025 dataset from the GEO database was analyzed via the limma package to identify differentially expressed genes (DEGs) in EC.
J Transl Med
January 2025
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background: Colorectal cancer (CRC) exhibits a high incidence globally, with the liver being the most common site of distant metastasis. At the time of diagnosis, 20-30% of CRC patients already present with liver metastases. Colorectal liver metastasis (CRLM) is a major cause of mortality among CRC patients.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
Background: Colorectal cancer (CRC) is a prevalent malignancy worldwide, associated with significant morbidity and mortality. Cyclin-dependent kinase 1 (CDK1) plays a crucial role in cell cycle regulation and has been implicated in various cancers. This study aimed to evaluate the prognostic value of CDK1 in CRC and to identify traditional Chinese medicines (TCM) that can target CDK1 as potential treatments for CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!