The peripheral nervous system (PNS) is an attractive target for modulation of afferent input (e.g., nociceptive input signaling tissue damage) to the central nervous system. To advance mechanistic understanding of PNS neural encoding and modulation requires single-unit recordings from individual peripheral neurons or axons. This is challenged by multiple connective tissue layers surrounding peripheral nerve fibers that prevent electrical recordings by existing electrodes or electrode arrays. In this study, we developed a novel microelectrode array (MEA) via silicon-based microfabrication that consists of 5 parallel hydrophilic gold electrodes surrounded by silanized hydrophobic surfaces. This novel hydrophilic/hydrophobic surface pattern guides the peripheral nerve filaments to self-align towards the hydrophilic electrodes, which dramatically reduces the technical challenges in conducting single-unit recordings. We validated our MEA by recording simultaneous single-unit action potentials from individual axons in mouse sciatic nerves, including both myelinated A-fibers and unmyelinated C-fibers. We confirmed that our recordings were single units from individual axons by increasing nerve trunk electrical stimulus intensity, which did not alter the spike shape or amplitude. By reducing the technical challenges, our novel MEA will likely allow peripheral single-unit recordings to be adopted by a larger research community and thus expedite our mechanistic understanding of peripheral neural encoding and modulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269151PMC
http://dx.doi.org/10.1016/j.snb.2020.128111DOI Listing

Publication Analysis

Top Keywords

single-unit recordings
16
peripheral nerve
12
microelectrode array
8
nervous system
8
mechanistic understanding
8
neural encoding
8
encoding modulation
8
technical challenges
8
individual axons
8
peripheral
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!