Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heterochromatin is a classic context for studying the mechanisms of chromatin organization. At the core of a highly conserved type of heterochromatin is the complex formed between chromatin methylated on histone H3 lysine 9 and HP1 proteins. This type of heterochromatin plays central roles in gene repression, genome stability, and nuclear mechanics. Systematic studies over the last several decades have provided insight into the biophysical mechanisms by which the HP1-chromatin complex is formed. Here, we discuss these studies together with recent findings indicating a role for phase separation in heterochromatin organization and function. We suggest that the different functions of HP1-mediated heterochromatin may rely on the increasing diversity being uncovered in the biophysical properties of HP1-chromatin complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128075 | PMC |
http://dx.doi.org/10.1101/sqb.2019.84.040360 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!