Background: In periodontal tissue engineering, periodontal ligament stem cells derived from patients with periodontitis (P-PDLSCs) are among the most promising and accessible stem cells for repairing disrupted alveolar bone and other connective tissues around the teeth. However, the inflammatory environment influences the osteogenic differentiation ability of P-PDLSCs. We examined low-intensity pulsed ultrasound (LIPUS) in P-PDLSCs in vitro and in rats with experimental periodontitis to determine whether LIPUS can enhance the osteogenic differentiation of stem cells.

Materials And Methods: P-PDLSCs were harvested and isolated from the periodontal tissues around the teeth of periodontitis patients, and healthy PDLSCs (H-PDLSCs) were obtained from tissues around healthy teeth. After validation by flow cytometry analysis, the P-PDLSCs were cultured in osteogenic medium either pretreated with the endoplasmic reticulum stress (ERS) inhibitor 4-phenyl butyric acid (4-PBA) or not pretreated and then treated with or without LIPUS (90 mW/cm, 1.5 MHz) for 30 min per day. Cell viability, ERS marker expression, and osteogenic potential were determined between the different treatment groups. LPS-induced H-PDLSCs were used to mimic the inflammatory environment. In addition, we established a model of experimental periodontitis in rats and used LIPUS and 4-PBA as treatment methods. Then, the maxillary bone was collected, and micro-CT and histology staining methods were used to detect the absorption of alveolar bone.

Results: Our data showed that the P-PDLSCs derived from periodontitis tissues were in a more pronounced ERS state than were the H-PDLSCs, which resulted in the former being associated with increased inflammation and decreased osteogenic ability. LIPUS can alleviate ERS and inflammation while increasing the bone formation capacity of P-PDLSCs in vivo and in vitro.

Conclusions: LIPUS may be an effective method to enhance the outcome of periodontal tissue engineering treatments of periodontitis by suppressing inflammation and increasing the osteogenic differentiation of P-PDLSCs through the unfolded protein response pathway, and more detailed studies are needed in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268771PMC
http://dx.doi.org/10.1186/s13287-020-01732-5DOI Listing

Publication Analysis

Top Keywords

stem cells
12
osteogenic differentiation
12
low-intensity pulsed
8
pulsed ultrasound
8
periodontal ligament
8
ligament stem
8
unfolded protein
8
protein response
8
periodontal tissue
8
tissue engineering
8

Similar Publications

Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment.

Sci Adv

January 2025

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.

View Article and Find Full Text PDF

Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!