Developing a Multi-target Model to Predict the Activity of Monoamine Oxidase A and B Drugs.

Curr Top Med Chem

LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.

Published: May 2021

Introduction: Monoamine oxidase inhibitors (MAOIs) are compounds largely used in the treatment of Parkinson's disease (PD), Alzheimer's disease and other neuropsychiatric disorders since they are closely related to the MAO enzymes activity. The two isoforms of the MAO enzymes, MAO-A and MAO-B, are responsible for the degradation of monoamine neurotransmitters and due to this, relevant efforts have been devoted to finding new compounds with more selectivity and less side effects. One of the most used approaches is based on the use of computational approaches since they are time and money-saving and may allow us to find a more relevant structure-activity relationship.

Objective: In this manuscript, we will review the most relevant computational approaches aimed at the prediction and development of new MAO inhibitors. Subsequently, we will also introduce a new multitask model aimed at predicting MAO-A and MAO-B inhibitors.

Methods: The QSAR multi-task model herein developed was based on the use of the linear discriminant analysis. This model was developed gathering 5,759 compounds from the public dataset Chembl. The molecular descriptors used was calculated using the Dragon software. Classical statistical tests were performed to check the validity and robustness of the model.

Results: The herein proposed model is able to correctly classify all the 5,759 compounds. All the statistical performed tests indicated that this model is robust and reproducible.

Conclusion: MAOIs are compounds of large interest since they are largely used in the treatment of very serious illness. These inhibitors may lose efficacy and produce severe side effects. Due to this, the development of selective MAO-A or MAO-B inhibitors is crucial for the treatment of these diseases and their effects. The herein proposed multi-target QSAR model may be a relevant tool in the development of new and more selective MAO inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026620666200603121224DOI Listing

Publication Analysis

Top Keywords

mao-a mao-b
12
monoamine oxidase
8
maois compounds
8
mao enzymes
8
side effects
8
computational approaches
8
mao inhibitors
8
model developed
8
5759 compounds
8
development selective
8

Similar Publications

Introduction: Adjunctive therapies to treat OFF episodes resulting from long-term levodopa treatment in Parkinson disease (PD) are hampered by safety and tolerability issues. Istradefylline offers an alternative mechanism (adenosine A2A receptor antagonist) and therefore potentially improved tolerability.

Methods: A systematic review of PD adjuncts published in 2011 was updated to include randomized controlled trials published from January 1, 2010-April 15, 2019.

View Article and Find Full Text PDF

This study aims to elucidate current trends in clinical practice for managing depression in elderly patients, focusing on the utilization of pharmacotherapeutics and integrated care models to improve patient outcomes. A comprehensive survey was conducted among physicians from various European countries to gather insights into prescribing habits, treatment patterns, and the impact of comorbidities on therapeutic choices, with a focus on trazodone. The participants included psychiatrists, general practitioners, and neurologists actively involved in elderly depression care.

View Article and Find Full Text PDF

The pathology of Alzheimer's disease (AD) is complex due to its multifactorial nature and single targeting drugs proved inefficient. A series of novel 4-N-substituted-2-phenylquinazoline derivatives was designed and synthesized as potential multi-target directed ligands (MTDLs) through dual inhibition of AChE and MAO-B enzymes along with Aβ aggregation inhibition for the treatment of AD. Two compounds in the series, VAV-8 and VAV-19 were found to be the most potent inhibitors of both AChE and MAO-B enzymes and moderate inhibitor of Aβ, with good thermodynamic stability at the binding pocket of the enzymes.

View Article and Find Full Text PDF

Introduction: Prasinezumab was shown to potentially delay motor progression in individuals with early-stage Parkinson's disease (PD) who were either treatment-naïve or on monoamine oxidase type B inhibitor (MAO-Bi) therapy in the PASADENA study. We report the rationale, design, and baseline patient characteristics of the PADOVA study, designed to evaluate prasinezumab in an early-stage PD population receiving standard-of-care (SOC) symptomatic medications.

Methods: PADOVA (NCT04777331) is a Phase 2b, multicenter, randomized, double-blind, placebo-controlled, parallel-group study, in which individuals with early-stage PD on SOC stable symptomatic monotherapy (levodopa or MAO-Bi) receive intravenous prasinezumab 1500 mg every 4 weeks.

View Article and Find Full Text PDF

Chronic stress exposure has been widely recognized as a significant contributor to numerous central nervous system (CNS) disorders, leading to debilitating behavioral changes such as anxiety, depression, and cognitive impairments. The prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress disrupts the neuroendocrine balance and has detrimental effects on neuronal function and survival. () Gaertn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!