AI Article Synopsis

  • The study highlights the need for new biomarkers to better identify high-risk acute coronary syndrome (ACS) patients, focusing on the role of circulating microRNAs (miRNAs) as potential risk indicators.
  • In a comparison between ACS patients and control groups, seven miRNAs showed significantly different levels, with five being strongly linked to ACS risk.
  • By integrating specific miRNAs into existing predictive models, the study improved risk assessment accuracy, increasing the predictive performance from an area under the curve (AUC) of 0.882 to 0.924.

Article Abstract

Background: The discovery of novel biomarkers that improve risk prediction models of acute coronary syndrome (ACS) is needed to better identify and stratify very high-risk patients. MicroRNAs (miRNAs) are essential non-coding modulators of gene expression. Circulating miRNAs recently emerged as important regulators and fine-tuners of physiological and pathological cardiovascular processes; therefore, specific miRNAs expression profiles may represent new risk biomarkers. The aims of the present study were: i) to assess the changes in circulating miRNAs levels associated with ACS and ii) to evaluate the incremental value of adding circulating miRNAs to a clinical predictive risk model.

Methods And Results: The study population included ACS patients (n = 99) and control subjects (n = 103) at high to very high cardiovascular risk but without known coronary event. Based on a miRNA profiling in a matched derivation case (n = -6) control (n = 6) cohort, 21 miRNAs were selected for validation. Comparing ACS cases versus controls, seven miRNAs were significantly differentially expressed. Multivariate logistic regression analyses demonstrated that among the seven miRNAs tested, five were independently associated with the occurrence of ACS. A receiver operating characteristic curve analysis revealed that the addition of miR-122 + miR-150 + miR-195 + miR-16 to the clinical model provided the best performance with an increased area under the curve (AUC) from 0.882 to 0.924 (95% CI 0.885-0.933, p = 0.003).

Conclusions: Our study identified a powerful signature of circulating miRNAs providing additive value to traditional risk markers for ACS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356017PMC
http://dx.doi.org/10.3390/jcm9061674DOI Listing

Publication Analysis

Top Keywords

circulating mirnas
16
mirnas
9
acute coronary
8
coronary syndrome
8
acs
6
risk
5
identification mirna
4
mirna based-signature
4
based-signature associated
4
associated acute
4

Similar Publications

The intertwined nature of cardiac and renal failure, where dysfunction in one organ predicts a poor outcome in the other, has long driven the interest in uncovering the exact molecular links between the two. Elucidating the mechanisms driving Cardiorenal Syndrome (CRS) will enable the development of targeted therapies that disrupt this detrimental cycle, potentially improving outcomes for patients. A recent study by Chatterjee .

View Article and Find Full Text PDF

Introduction: Micro ribonucleic acids (miRNAs) are small non-coding RNAs that modulate the expression of various genes. They have an important role in cancer pathogenesis. Differential expression of multiple miRNAs have been used as potential diagnostic and prognostic markers.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most prevalent, treatment-resistant, and fatal form of brain malignancy. It is characterized by genetic heterogeneity, and an infiltrative nature, and GBM treatment is highly challenging. Despite multimodal therapies, clinicians lack efficient prognostic and predictive markers.

View Article and Find Full Text PDF

Testicular germ cell tumour (TGCT) is a malignancy with known inherited risk factors, affecting young men. We have previously identified several hundred differentially abundant circulating RNAs in pre-diagnostic serum from TGCT cases compared to healthy controls. In this study, we performed Weighted Gene Co-expression Network Analysis (WGCNA) on mRNA and miRNA data from these samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!