In present work, carbon nanomaterials (CNMs) are investigated as potential carriers of Ga, which is widely used in positron emission tomography (PET) in nuclear medicine. Sorption behavior of Ga was studied onto CNMs of various structures and chemical compositions: nanodiamonds (ND), reduced graphite oxide (rGiO) and multi-walled carbon nanotubes (MWCNT), as well as their oxidized (ND-COOH) or reduced (rGiO-H, MWCNT-H) forms. The physicochemical properties of the nanoparticles were determined by high resolution transmission electron microscopy, x-ray photoelectron spectroscopy, dynamic light scattering and potentiometric titration. The content of Ga in the solutions during the study of sorption was determined by gamma-ray spectrometry. The highest degree of Ga sorption was observed on ND and ND-COOH samples, and the optimal sorption conditions were determined: an aqueous solution with a pH of 5-7, m/V ratio of 50 μg/mL and a room temperature (25 °C). The Ga@ND and Ga@ND-COOH conjugates were found to be stable in a model blood solution-phosphate-buffered saline with a pH of 7.3, containing 40 g/L of bovine serum albumin: Ga desorption from these samples in 90 minutes was no more than 20% at 25 °С and up to 30% at 37 °С. Such a quantity of desorbed Ga does not harm the body and does not interfere with the PET imaging process. Thus, ND and ND-COOH are promising CNMs for using as carriers of Ga for PET diagnostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353157PMC
http://dx.doi.org/10.3390/nano10061090DOI Listing

Publication Analysis

Top Keywords

carbon nanomaterials
8
positron emission
8
emission tomography
8
sorption
5
nanomaterials sorption
4
sorption potential
4
potential positron
4
tomography work
4
work carbon
4
nanomaterials cnms
4

Similar Publications

The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

This review explores the impact of various additives on the mechanical properties of polylactic acid (PLA) filaments used in Fused Deposition Modeling (FDM) 3D printing. While PLA is favored for its biodegradability and ease of use, its inherent limitations in strength and heat resistance necessitate enhancements through additives. The impact of natural and synthetic fibers, inorganic particles, and nanomaterials on the mechanical properties, printability, and overall functionality of PLA composites was examined, indicating that fiber reinforcements, such as carbon and glass fibers, significantly enhance tensile strength and stiffness, while natural fibers contribute to sustainability but may compromise mechanical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!