Background: TP53 plays critical roles in sensitivity to chemotherapy, and aging. Collagen is very important in aging. The molecular structure and biochemical properties of collagen changes during aging. The discoidin domain receptor (DDR1) is regulated in part by collagen. Elucidating the links between TP53 and DDR1 in chemosensitivity and aging could improve therapies against cancer and aging.
Results: Restoration of WT-TP53 activity resulted in increased sensitivity to chemotherapeutic drugs and elevated expression of key components of the Raf/MEK/ERK, PI3K/Akt and DDR1 pathways. DDR1 could modulate the levels of Raf/MEK/ERK and PI3K/Akt pathways as well as sensitize the cells to chemotherapeutic drugs. In contrast, suppression of WT TP53 with a dominant negative (DN) TP53 gene, suppressed DDR1 protein levels and increased their chemoresistance.
Conclusion: Restoration of WT TP53 activity or increased expression of the anti-aging DDR1 collagen receptor can result in enhanced sensitivity to chemotherapeutic drugs. Our innovative studies indicate the important links between WT TP53 and DDR1 which can modulate Raf/MEK/ERK and PI3K/Akt signaling as well as chemosensitivity and aging.
Methods: We investigated the roles of wild type (WT) and mutant TP53 on drug sensitivity of prostate cancer cells and the induction of Raf/MEK/ERK, PI3K/Akt and DDR1 expression and chemosensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346063 | PMC |
http://dx.doi.org/10.18632/aging.103377 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.
Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
Anaplastic thyroid carcinoma (ATC) is an aggressive cancer that requirements rapid diagnosis and multimodal treatment. Next-generation sequencing (NGS) aids in personalized therapies and improved trial enrollment. The role of liquid-based NGS in ATC remains unclear.
View Article and Find Full Text PDFGynecol Oncol
January 2025
Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Introduction: Molecular alterations in the PI3K/AKT and Ras/Raf/MEK/ERK pathways are frequently observed in patients with endometrial cancers. However, mTOR inhibitors, such as temsirolimus, have modest clinical benefits. In addition to inducing metabolic changes in cells, metformin activates AMPK, which in turn inhibits the mTOR pathway.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Pharmacology, Orotta College of Medicine and Health Sciences, Asmara University, Asmara, State of Eritrea.
Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates 'RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK' pathways, which enhance cell division, survival, angiogenesis, and tumour growth while inhibiting apoptosis and metastasis. Secondary mutations (e.
View Article and Find Full Text PDFInt J Biol Sci
December 2024
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!