This study investigated the effect of lysosomal iron involvement in the mechanism of mitochondrial apoptosis on bovine muscle protein degradation during postmortem aging. Six crossbred cattle were studied to evaluate intracellular reactive oxygen species (ROS), antioxidant enzyme activity, lysosomal membrane stability, mitochondrial dysfunction-induced apoptosis, desmin and troponin-T degradation in both control and iron chelator desferrioxamine (DFO) groups. Results showed that lysosomal iron induced ROS accumulation and lysosomal membrane destabilization by decreasing the antioxidant enzyme activity (P < 0.05). Subsequently, lysosomal dysfunction mediated by iron increased mitochondrial membrane permeability and decreased mitochondrial membrane potential, thereby enhancing Bid and cytochrome c release and caspase-9/-3 activation (P < 0.05). Ultimately, lysosomal iron mediated lysosomal-mitochondrial apoptosis increased the postmortem bovine muscle desmin and troponin-T degradation (P < 0.05). The results indicated that lysosomal iron contributes to postmortem meat tenderization through the lysosomal-mitochondrial dysfunction-induced apoptosis pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.127174DOI Listing

Publication Analysis

Top Keywords

lysosomal iron
12
iron involvement
8
involvement mechanism
8
mechanism mitochondrial
8
mitochondrial apoptosis
8
muscle protein
8
protein degradation
8
antioxidant enzyme
8
enzyme activity
8
lysosomal membrane
8

Similar Publications

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP) signaling in the actin-dependent pathogenicity of . This study further demonstrated that iron transiently regulated phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor Arf220, facilitating co-trafficking to the plasma membrane, crucial for PIP production.

View Article and Find Full Text PDF

Hijacking endogenous iron to amplify lysosomal-mitochondrial cascade damage for boosting anti-tumor immunotherapy.

Biomaterials

May 2025

Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:

The cross-talk between lysosomes and mitochondria is crucial for keeping intracellular homeostasis and metabolic function, providing a promising approach for tumor therapy. Herein, we employed polyvinylpyrrolidone (PVP)-modified Cu-gallic acid (CuGA) complex nano-boosters for amplifying lysosomes-mitochondria cascaded damage, and thereby effectively inducing cuproptosis and pyroptosis of breast tumor cells to boost anti-tumor immunotherapy. The CuGA nano-boosters could hijack lysosomal iron to form a bimetallic catalyst Cu(Fe)GA in situ through ion-exchange reaction, and cause the release of Cu and metal ion dysregulation (i.

View Article and Find Full Text PDF

Salinomycin and its derivatives display promising anti-proliferating activity against bloodstream forms of . The mechanism of trypanocidal action of these compounds is due to their ionophoretic activity inducing an influx of sodium cations followed by osmotic water uptake, leading to massive swelling of bloodstream-form trypanosomes. Generally, higher trypanocidal activities of salinomycin derivatives are associated with higher cell swelling activities.

View Article and Find Full Text PDF

Cellular mechanisms of copper neurotoxicity in human, differentiated neurons.

Arch Toxicol

December 2024

Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Potsdam, Germany.

Copper (Cu) is an essential trace element involved in fundamental physiological processes in the human body. Even slight disturbances in the physiological Cu homeostasis are associated with the manifestation of neurodegenerative diseases. While suggesting a crucial role of Cu in the pathogenesis, the exact mechanisms of Cu neurotoxicity involved in the onset and progression of neurological diseases are far from understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!