Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adenosine triphosphate (ATP) biomolecules play critial roles in the biomineralization process during the formation of amorphous calcium phosphate composites (ACPC), and ACPC is an important drug carrier due to its significant advantages of biocompatibility and biodegradability. Hence, studying the behavior of ACPC nanodrug carriers is crucial to investigate the structural regulation of biomimetic minerals and calcium phosphate (CaP)-based drug delivery systems. However, it is difficult to probe these interactions using traditional characterization methods. In this paper, XANES analysis together with STXM successfully provided a method to reveal the interaction of ATP and drug molecules with individual mesoporous ACPC. We found that the adenosine and phosphate groups of ATP biomolecules coordinated with Ca and played critical roles in the formation of ACPC; drug molecules with the -COOH groups were linked to Cavia carboxylic acid groups primarily by electrostatic interactions, and the N-containing ring structures within the drug molecules also coordinated with Ca.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00797h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!