Inland sources of particulate chloride for atmospheric nitryl chloride (ClNO) formation remain unknown and unquantified, hindering air quality assessments. Globally each winter, tens of millions of tons of road salt are spread on roadways for deicing. Here, we identify road salt aerosol as the primary chloride aerosol source, accounting for 80-100% of ClNO formation, at an inland urban area in the wintertime. This study provides experimental evidence of the connection between road salt and air quality through the production of this important reservoir for nitrogen oxides and chlorine radicals, which significantly impact atmospheric composition and pollutant fates. A numerical model was employed to quantify the contributions of chloride sources to ClNO production. The traditional method for simulating ClNO considers chloride to be homogeneously distributed across the atmospheric particle population; yet, we show that only a fraction of the particulate surface area contains chloride. Our new single-particle parametrization considers this heterogeneity, dramatically lowering overestimations of ClNO levels that have been routinely reported using the prevailing methods. The identification of road salt as a ClNO source links this common deicing practice to atmospheric composition and air quality in the urban wintertime environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256959PMC
http://dx.doi.org/10.1021/acscentsci.9b00994DOI Listing

Publication Analysis

Top Keywords

road salt
20
air quality
12
salt aerosol
8
clno formation
8
atmospheric composition
8
chloride
6
clno
6
salt
5
atmospheric
5
observation road
4

Similar Publications

Ultrahigh nickel cathode materials are widely utilized due to their outstanding energy and power densities. However, the presence of cobalt can cause significant lattice distortion during charge and discharge cycles, leading to the loss of active lithium, the formation of lattice cracks, and the emergence of a rock salt phase that hinders lithium-ion transport. Herein, we developed a novel cobalt-free, aluminum-doped cathode material, LiNiMnAlO (NMA), which effectively delays the harmful H2-H3 phase transition, reduces lattice distortion, alleviates stress release, and significantly enhances structural stability.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH).

View Article and Find Full Text PDF

The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation.

View Article and Find Full Text PDF

Effect of sulfinate salt on bonding and polymerization of adhesive to intracoronally bleached dentin.

Sci Rep

January 2025

Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, 34 Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.

To evaluate the effect of sulfinate salt on the bond performance of a two-step self-etch adhesive to an intracoronally bleached pulpal dentin surface. Intracoronally bleached bovine teeth were treated with or without sulfinate salt (sulfinate agent (SA): Clearfil DC activator) before 2-SEA (Clearfil SE Bond 2) application, while unbleached teeth served as the control (n = 5 teeth). Microtensile bond strength (µTBS) using the bonded surface area of 1 mm at the crosshead speed of 1 mm/min measurements after 24 h storage and thermocycles (TC), degree of conversion (DC) analyses by Raman spectroscopy (n = 3 teeth), ultrastructure of resin-dentin interface (n = 3 teeth), and intracoronally bleached pulp chamber dentin surface (n = 3 teeth) observations by scanning electron microscopy (SEM) were subsequently performed.

View Article and Find Full Text PDF

Hot carrier dynamics in the BAPbBr/MoS heterostructure.

Nanoscale

January 2025

Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.

Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!