Objectives: Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim of this study was to compare the efficiency of two-dimensional with a three-dimensional culture system in their ability to generate functional motor neuron-like cells from adipose-derived stem cells.

Materials And Methods: We compared motor neuron-like cells derived from rat adipose tissue in differentiation, adhesion, proliferation, and functional properties on two-dimensional with three-dimensional culture systems. Neural differentiation was analyzed by immunocytochemistry for immature (Islet1) and mature (HB9, ChAT, and synaptophysin) motor neuron markers.

Results: Our results indicated that the three-dimensional environment exhibited an increase in the number of Islet1. In contrast, two-dimensional culture system resulted in more homeobox gene (HB9), Choline Acetyltransferase (ChAT), and synaptophysin positive cells. The results of this investigation showed that proliferation and adhesion of motor neuron-like cells significantly increased in three-dimensional compared with two-dimensional environments.

Conclusion: The findings of this study suggested that three-dimension may create a proliferative niche for motor neuron-like cells. Overall, this study strengthens the idea that three-dimensional culture may mimic neural stem cell environment for neural tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239419PMC
http://dx.doi.org/10.22038/ijbms.2020.39797.9434DOI Listing

Publication Analysis

Top Keywords

motor neuron-like
20
neuron-like cells
20
motor neuron
12
three-dimensional culture
12
motor
8
adhesion proliferation
8
cell therapy
8
stem cell
8
two-dimensional three-dimensional
8
culture system
8

Similar Publications

A GGGGCC hexanucleotide repeat expansion (HRE) within the C9orf72 gene is a major causative factor in amyotrophic lateral sclerosis (ALS). This aberrant HRE results in the generation of five distinct dipeptide repeat proteins (DPRs). Among the DPRs, poly-PR accumulates in the nucleus and exhibits particularly strong toxicity to motor and cortical neurons.

View Article and Find Full Text PDF

Experimental study of cBMMSC based on nanosilver hydrogel nerve conduit for repairing spinal cord injury.

J Cell Mol Med

November 2024

Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.

Article Synopsis
  • * The experimental group received cBMMSC-infused conduits, while the control group had conduits without these cells; both groups were evaluated for neuron-like cell differentiation, neuronal regeneration, and axon growth after four weeks.
  • * Various methods, including immunostaining and Western blotting, were employed to assess neural recovery and functional outcomes, such as motor ability and nerve impulse transmission, in both groups.
View Article and Find Full Text PDF

Imaging Mitochondrial Axonal Transport in Human Induced Pluripotent Stem Cell-Derived Neurons.

Methods Mol Biol

November 2024

Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal.

Neuronal mitochondria are essential organelles to maintain synaptic activity due to the high calcium buffering capacity and ATP production. In neurons, mitochondria transport occurs along the microtubules mediated by motor proteins, kinesins and dynein, to drive mitochondria toward the synapses. Disruption of axonal transport is an early pathogenic event in neurodegenerative disorders and growing evidence supports that it may precede neurodegeneration.

View Article and Find Full Text PDF

Direct conversion of urine-derived cells into functional motor neuron-like cells by defined transcription factors.

Sci Rep

November 2024

Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan.

Direct cell-type conversion of somatic cells into cell types of interest has garnered great attention because it circumvents rejuvenation and preserves the hallmarks of cellular aging (unlike induced pluripotent stem cells [iPSCs]) and is more suitable for modeling diseases with strong age-related and epigenetic contributions. Fibroblasts are commonly used for direct conversion; however, obtaining these cells requires highly invasive skin biopsies. Urine-derived cells (UDCs) are an alternative cell source and can be obtained via noninvasive procedures.

View Article and Find Full Text PDF

Luteolin Mitigates Dopaminergic Neuron Degeneration and Restrains Microglial M1 Polarization by Inhibiting Toll Like Receptor 4.

J Integr Neurosci

September 2024

Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.

Background: Luteolin is a natural flavonoid and its neuroprotective and anti-inflammatory effects have been confirmed to mitigate neurodegeneration. Despite these findings, the underlying mechanisms responsible for these effects remain unclear. Toll-like receptor 4 (TLR4) is widely distributed in microglia and plays a pivotal role in neuroinflammation and neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!