Background: Short interspersed elements (SINEs) are ubiquitous components of eukaryotic genomes. SINEs are composite transposable elements that are mobilized by non-long terminal repeat (non-LTR) retrotransposons, also called long interspersed elements (LINEs). The 3' part of SINEs usually originated from that of counterpart non-LTR retrotransposons. The 5' part of SINEs mostly originated from small RNA genes. SINE1 is a group of SINEs whose 5' part originated from 7SL RNA, and is represented by primate and murine . Well-defined SINE1 has been found only from Euarchontoglires, a group of mammals, in contrast to the wide distribution of SINE2, which has a tRNA-derived sequence, from animals to plants to protists. Both and are mobilized by -type non-LTR retrotransposons, which are the only lineage of autonomous non-LTR retrotransposons active in these mammalian lineages.

Results: Here a new lineage of SINE1 is characterized from the seashore hagfish genome. This SINE1 family, designated -, is young, and is transposed by -type non-LTR retrotransposon, not -type. Comparison with other SINE families from hagfish indicated the birth of - through chimera formation of a 7SL RNA-derived sequence and an older tRNA-derived SINE family. It reveals parallel evolution of SINE1 in two vertebrate lineages with different autonomous non-LTR retrotransposon partners. The comparison between two SINE1 lineages supports that the RNA secondary structure of the domain of 7SL RNA is required for the efficient retrotransposition.

Conclusions: The hagfish SINE1 is the first evident SINE1 family found outside of Euarchontoglires. Independent evolution of SINE1 with similar RNA secondary structure originated in 7SL RNA indicates the functional importance of 7SL RNA-derived sequence in the proliferation of SINEs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245038PMC
http://dx.doi.org/10.1186/s13100-020-00210-2DOI Listing

Publication Analysis

Top Keywords

non-ltr retrotransposons
16
7sl rna-derived
12
sines originated
12
7sl rna
12
sine1
9
hagfish genome
8
reveals parallel
8
parallel evolution
8
interspersed elements
8
originated 7sl
8

Similar Publications

Background And Aims: Genomic changes triggered by polyploidy, chromosomal rearrangements, and/ or environmental stress are among factors that affect the activity of mobile elements, particularly Long Terminal Repeats Retrotransposons (LTR-RTs) and DNA transposons. Because these elements can proliferate and move throughout host genomes, altering the genetic, epigenetic and nucleotypic landscape, they have been recognized as a relevant evolutionary force. Beaksedges (Rhynchospora) stand out for their wide cosmopolitan distribution, high diversity (~400 spp.

View Article and Find Full Text PDF

R2 retrotransposons are model site-specific eukaryotic non-LTR retrotransposons that copy-and-paste into gene loci encoding ribosomal RNAs. Recently we demonstrated that avian A-clade R2 proteins achieve efficient and precise insertion of transgenes into their native safe-harbor loci in human cells. The features of A-clade R2 proteins that support gene insertion are not characterized.

View Article and Find Full Text PDF

Clam Genome and Transcriptomes Provide Insights into Molecular Basis of Morphological Novelties and Adaptations in Mollusks.

Biology (Basel)

October 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Bivalve mollusks, comprising animals enclosed in two shell valves, are well-adapted to benthic life in many intertidal zones. Clams have evolved the buried lifestyle, which depends on their unique soft tissue structure and their wedge-shaped muscular foot and long extendible siphons. However, molecular mechanisms of adaptative phenotype evolution remain largely unknown.

View Article and Find Full Text PDF

LINE-1 cfDNA Methylation as an Emerging Biomarker in Solid Cancers.

Cancers (Basel)

November 2024

Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany.

Epigenetic dysregulation is a hallmark of many human malignancies, with DNA methylation being a primary mechanism influencing gene expression and maintaining genomic stability. Genome-wide hypomethylation, characteristic of many cancers, is partly attributed to the demethylation of repetitive elements, including LINE-1, a prevalent non-LTR retrotransposon. The methylation status of LINE-1 is closely associated with overall genomic methylation levels in tumors.

View Article and Find Full Text PDF

Background: Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retrotransposons widespread across eukaryotes. They exist both as lineage-specific, fast-evolving elements and as ubiquitous superfamilies characterized by highly conserved domains (HCD). Several of these superfamilies have been described in bivalves, however their overall distribution and impact on host genome evolution are still unknown due to the extreme scarcity of transposon libraries for the clade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!