Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles.

Drug Deliv Transl Res

Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY, 10027, USA.

Published: February 2021

Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649787PMC
http://dx.doi.org/10.1007/s13346-020-00782-9DOI Listing

Publication Analysis

Top Keywords

drug delivery
24
inner ear
20
fully metallic
8
metallic microneedles
8
microneedles drug
8
delivery inner
8
round window
8
window membrane
8
middle ear
8
ear inner
8

Similar Publications

Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.

View Article and Find Full Text PDF

Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!