Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649787 | PMC |
http://dx.doi.org/10.1007/s13346-020-00782-9 | DOI Listing |
Expert Opin Drug Deliv
January 2025
CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.
View Article and Find Full Text PDFAdv Biol (Weinh)
January 2025
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!