The cholinesterases are essential targets implicated in the pathogenesis of Alzheimer's disease (AD). In the present study, virtual screening and molecular docking are performed to identify the potential hits. Docking-post processing (DPP) and pose filtration protocols against AChE and BChE resulted in three hits (AW00308, HTS04089, and JFD03947). Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) and molecular dynamics simulation analysis affirmed the stability and binding pattern of the docked complex JFD03947, which was further synthesized and evaluated for in vitro cholinesterase inhibition (AChE, IC = 0.062 µM; BChE, IC = 1.482 µM) activity. The enzyme kinetics study of the JFD03947 against hAChE and hBChE suggested a mixed type of inhibition. The results of thioflavin T-assay also elicited anti-Aβ aggregation activity by JFD03947. Further, biological evaluation of identified compound JFD03947 also showed neuroprotective ability against the SH-SY5Y neuroblastoma cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10822-020-00318-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!